精英家教网 > 高中数学 > 题目详情

【题目】已知函数

1)若关于x的方程仅有1个实数根,求实数的取值范围;

2)若是函数的极大值点,求实数a的取值范围.

【答案】(1);(2)

【解析】

(1)仅有1个实数根可考虑利用参变分离得,再分析函数的单调性与极值最值,画出图像分析何时仅有一根即可.
(2)表达出的函数式,求导后再根据极值点的大小关系分的不同类进行讨论即可.

1)依题意,,显然不是方程的根,故,令,则,

故函数上单调递增,且当时,,当x从负方向趋于0时以及时,,当x从正方向趋于0时,,

作出函数的图象如图所示,观察可知,,即实数的取值范围为

2,则

①若,则当时,,,,所以

时,,,所以.所以处取得极大值.

②若,则当时,,,所以.所以不是的极大值点.

综上所述,实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数处的切线方程;

2)当时,证明:函数只有一个零点;

3)若函数的极大值等于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,集合,集合

1)用列举法表示集合C

2)设集合C的含n个元素所有子集为,记有限集合M的所有元素和为,求的值;

3)已知集合PQ是集合C的两个不同子集,若P不是Q的子集,且Q不是P的子集,求所有不同的有序集合对的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某化工厂从今年一月起,若不改善生产环境,按生产现状,每月收入为80万元,同时将受到环保部门的处罚,第一个月罚4万元,以后每月增加2万元.如果从今年一月起投资500万元添加回收净化设备(改造设备时间不计),一方面可以改善环境,另一方面可以大大降低原料成本,据测算,添加回收净化设备并投产后的前4个月中的累计生产净收入g(n)是生产时间个月的二次函数是常数,且前3个月的累计生产净收入可达309万元,从第5个月开始,每个月的生产净收入都与第4个月相同,同时,该厂不但不受处罚,而且还将得到环保部门的一次性奖励120万元.

(1)求前6个月的累计生产净收入g(6)的值;

(2)问经过多少个月,投资开始见效,即投资改造后的纯收入多于不改造的纯收入.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,底面为正方形的四棱锥中,平面为棱上一动点,.

1)当中点时,求证:平面

2)当平面时,求的值;

3)在(2)的条件下,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是三条不同的直线,是三个不同的平面,给出下列四个命题:

①若,则

②若,则

③若是两条异面直线,,则

④若,则.

其中正确命题的序号是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 经过椭圆 的左右焦点,且与椭圆在第一象限的交点为,且三点共线,直线交椭圆 两点,且).

(1)求椭圆的方程;

(2)当三角形的面积取得最大值时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点和直线,直线过直线上的动点且与直线垂直,线段的垂直平分线与直线相交于点

I)求点的轨迹的方程;

II)设直线与轨迹相交于另一点,与直线相交于点,求的最小值

查看答案和解析>>

同步练习册答案