精英家教网 > 高中数学 > 题目详情

【题目】已知f(x+1)= ,则f(2x﹣1)的定义域为(
A.
B.
C.
D.

【答案】D
【解析】解:令x+1=t,则x=t﹣1,∴f(t)= =
∵﹣t2+2t≥0,解之得0≤t≤2.
∴函数f(t)= 的定义域为[0,2].
令0≤2x﹣1≤2,解得
∴函数f(2x﹣1)的定义域为[ ].
故选D.
【考点精析】根据题目的已知条件,利用函数的定义域及其求法的相关知识可以得到问题的答案,需要掌握求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】命题p: =1表示双曲线方程,命题q:函数f(m)= 有意义.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2y2=1上任意一点P,过点P作两直线分别交圆于AB两点,且∠APB=60°,则|PA|2+|PB|2的取值范围为___

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随机询问某大学40名不同性别的大学生在购买食物时是否读营养说明,得到如下列联表:

总计

读营养说明

16

8

24

不读营养说明

4

12

16

总计

20

20

40

(1)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与是否读营养说明之间有关系?

(2)从被询问的16名不读营养说明的大学生中,随机抽取2名学生,求抽到男生人数的分布列及其均值(即数学期望).

(注: ,其中为样本容量)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为 ,直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系 中,直线 的参数方程为 为参数),以该直角坐标系的原点 为极点, 轴的非负半轴为极轴的极坐标系下,圆 的方程为
(1)求直线 的普通方程和圆 的圆心的极坐标;
(2)设直线 和圆 的交点为 ,求弦 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左焦点的离心率为的等比中项.

(1)求曲线的方程;

(2)倾斜角为的直线过原点且与交于两点,倾斜角为的直线过且与交于两点,若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:

(1)AP∥平面BDM;
(2)AP∥GH.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)求函数的单调区间;

(2)若,证明:对任意的实数,都有.

查看答案和解析>>

同步练习册答案