精英家教网 > 高中数学 > 题目详情
11.已知抛物线y2=2px(p>0),过其焦点且斜率为2的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为1,则该抛物线的准线方程为(  )
A.x=1B.x=-1C.x=2D.x=-2

分析 先假设A,B的坐标,根据A,B满足抛物线方程将其代入得到两个关系式,再将两个关系式相减根据直线的斜率和线段AB的中点的纵坐标的值可求出p的值,进而得到准线方程.

解答 解:设A(x1,y1)、B(x2,y2),则有y12=2px1,y22=2px2
两式相减得:(y1-y2)(y1+y2)=2p(x1-x2),
又因为直线的斜率为2,所以有y1+y2=p,又线段AB的中点的纵坐标为1,
即y1+y2=2,所以p=2,
所以抛物线的准线方程为x=-1.
故选B.

点评 本题考查抛物线的几何性质、直线与抛物线的位置关系等基础知识.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.如图矩形ABCD的长为2cm,宽为1cm,它是水平放置的一个平面图形的直观图,则原图形的周长是(  )    
A.10cmB.8cmC.$(2\sqrt{3}+4)cm$D.$4\sqrt{2}cm$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.log2sin(-$\frac{15π}{4}$)=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若五个数1、2、3、4、a的平均数为4,则这五个数的标准差为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y≥-1\end{array}\right.$,且z=2x+y的最大值和最小值分别为m和n,则2m-n的值为(  )
A.$\frac{9}{2}$B.6C.$\frac{15}{2}$D.9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.抛物线C:x2=4y上的点Q到点B(4,1)与到x轴的距离之和的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若角α的终边经过点P(-2cos60°,-$\sqrt{2}$sin45°),则sinα的值为(  )
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2.
(Ⅰ)求数列{an}的通项公式
(Ⅱ)若数列{$\frac{n+1}{{a}_{n}}$} 的前n 项和为Tn,求证:1≤Tn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知命题p:方程x2+2mx+1=0有两个不相等的根,命题q:方程x2+2(m-2)x-3m+10=0无实根,若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

同步练习册答案