精英家教网 > 高中数学 > 题目详情
11.指数函数f(x)=ax(a>0,a≠1)的图象经过点(2,16),则实数a的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

分析 由题意代入点的坐标,即可求出a的值.

解答 解:指数函数f(x)=ax(a>0,a≠1)的图象经过点(2,16),
∴16=a2
解得a=4,
故选:D.

点评 本题考查了指数函数的图象和性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x2+mx+m+1(m>5)的两个零点分别为tanα,tanβ,且α,β∈(-$\frac{π}{2}$,$\frac{π}{2}$),则α+β的值为(  )
A.$\frac{π}{4}$B.-$\frac{π}{4}$C.$\frac{3}{4}π$D.-$\frac{3}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1(-1,0),F2(1,0),且椭圆C经过点P($\frac{4}{3}$,$\frac{1}{3}$),椭圆C的方程为$\frac{{x}^{2}}{2}$+y2=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1上点P到右焦点的距离的(  )
A.最大值为5,最小值为4B.最大值为10,最小值为8
C.最大值为10,最大值为6D.最大值为9,最小值为1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.复数z满足$z=\frac{2+i}{i}+i$,则|z|=(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x+$\frac{m}{x}$,且此函数图象过点(1,2).
(Ⅰ)求实数m的值;
(Ⅱ)判断函数f(x)的奇偶性并证明;
(Ⅲ)讨论函数f(x)在(0,1)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(2cosωx,-1),\overrightarrow n=(sinωx-cosωx,2)$(ω>0),函数f(x)=$\overrightarrow m•\overrightarrow n+3$,若函数f(x)的图象的两个相邻对称中心的距离为$\frac{π}{2}$.
(Ⅰ)求函数f(x)的单调增区间;
(Ⅱ)若将函数f(x)的图象先向左平移$\frac{π}{4}$个单位,然后纵坐标不变,横坐标缩短为原来的$\frac{1}{2}$倍,得到函数g(x)的图象,当$x∈[\frac{π}{4},\frac{π}{2}]$时,求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.用min{a,b}表示a,b两个数中的最小值,设f(x)=min{-x-2,x-4},则f(x)的最大值为(  )
A.-2B.-3C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若直线mx-2y-1=0经过第一、三、四象限,则实数m的取值范围是m>0.

查看答案和解析>>

同步练习册答案