精英家教网 > 高中数学 > 题目详情
1.解不等式:x(10x2-9)>0.

分析 通过讨论x的范围,得到不等式组,解出即可.

解答 解:原不等式可化为:
$\left\{\begin{array}{l}{x>0}\\{1{0x}^{2}-9>0}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{1{0x}^{2}-9<0}\end{array}\right.$,
解得:x>$\frac{3\sqrt{10}}{10}$或x<-$\frac{3\sqrt{10}}{10}$.

点评 本题考查了不等式的解法,考查一元二次不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.已知x的不等式x2+ax+b<0的解集为{x|1<x<2},则a2+b2=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在边长为2的正方体ABCD-A1B1C1D1中,E、F、M分别是棱AB、BC、DD1的中点,
(1)求证:BM⊥平面B1EF;
(2)(理科) 求二面角M-B1E-F的余弦值.
(文科) 求直线ME与平面B1EF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.解不等式:$\frac{|5x-3|-|4x+1|}{{x}^{2}+x+1}$<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在同一坐标系中,将曲线y=2sin3x变为曲线y=sinx的伸缩变换是(  )
A.$\left\{{\begin{array}{l}{x=3{x^/}}\\{y=\frac{1}{2}{y^/}}\end{array}}\right.$B.$\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3{x^/}}\\{y=2{y^/}}\end{array}}\right.$D.$\left\{{\begin{array}{l}{{x^/}=3x}\\{{y^/}=2y}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若P=$\sqrt{a}$+$\sqrt{a+7}$,Q=$\sqrt{a+3}$+$\sqrt{a+4}$(a≥0),则P、Q的大小关系是:P<Q.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.复数z满足(z-2i)(1+i)=|1+$\sqrt{3}$i|(i为虚数单位),则复数z=1+i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直角梯形ABCD,满足AB⊥AD,CD⊥AD,AB=2AD=2CD=2现将其沿AC折叠成三棱锥D-ABC,当三棱锥D-ABC体积取最大值时其外接球的体积为(  )
A.$\frac{{\sqrt{3}π}}{2}$B.$\frac{4}{3}π$C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左顶点A作斜率为2的直线,与椭圆的另一个交点为B,与y轴的交点为C,已知$\overrightarrow{AB}=\frac{6}{13}\overrightarrow{BC}$.
(Ⅰ)求椭圆的离心率;
(Ⅱ)设动直线y=kx+m与椭圆有且只有一个公共点P,且与直线x=4相交于点Q,若x轴上存在一定点M(1,0),使得PM⊥QM,求椭圆的方程.

查看答案和解析>>

同步练习册答案