精英家教网 > 高中数学 > 题目详情

【题目】记min{x,y}= 设f(x)=min{x2 , x3},则(
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)

【答案】C
【解析】解:x2﹣x3=x2(1﹣x), ∴当x≤1时,x2﹣x3≥0,当x>1时,x2﹣x3<0,
∴f(x)=
若t>1,则|f(t)+f(﹣t)|=|t2+(﹣t)3|=|t2﹣t3|=t3﹣t2
|f(t)﹣f(﹣t)|=|t2+t3|=t2+t3
f(t)﹣f(﹣t)=t2﹣(﹣t)3=t2+t3
若0<t<1,|f(t)+f(﹣t)|=|t3+(﹣t)3|=0,
|f(t)﹣f(﹣t)|=|t3+t3|=2t3
f(t)﹣f(﹣t)=t3﹣(﹣t)3=2t3
当t=1时,|f(t)+f(﹣t)|=|1+(﹣1)|=0,
|f(t)﹣f(﹣t)|=|1﹣(﹣1)|=2,
f(t)﹣f(﹣t)=1﹣(﹣1)=2,
∴当t>0时,|f(t)+f(﹣t)|<f(t)﹣f(﹣t),|f(t)﹣f(﹣t)|=f(t)﹣f(﹣t),
故A错误,B错误;
当t>0时,令g(t)=f(1+t)+f(1﹣t)=(1+t)2+(1﹣t)3=﹣t3+4t2﹣t+2,
则g′(t)=﹣3t2+8t﹣1,令g′(t)=0得﹣3t2+8t﹣1=0,
∴△=64﹣12=52,∴g(t)有两个极值点t1 , t2
∴g(t)在(t2 , +∞)上为减函数,
∴存在t0>t2 , 使得g(t0)<0,
∴|g(t0)|>g(t0),
故C正确;
令h(t)=(1+t)﹣f(1﹣t)=(1+t)2﹣(1﹣t)3=t3﹣2t2+5t,
则h′(t)=3t2﹣4t+5=3(t﹣ 2+ >0,
∴h(t)在(0,+∞)上为增函数,∴h(t)>h(0)=0,
∴|h(t)|=h(t),即|f(1+t)﹣f(1﹣t)|=f(1+t)﹣f(1﹣t),
故D错误.
故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为的四个顶点为顶点的四边形的面积为

(1)求椭圆的方程

(2)设分别为椭圆的左右顶点是直线上不同于点的任意一点若直线分别与椭圆相交于异于的点试探究是否在以为直径的圆内证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn(n∈N*),且满足an+2Sn=2n+2.
(1)求数列{an}的通项公式;
(2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,直线AM,BM相交于点M,且这两条直线的斜率之积为.

(1)求点M的轨迹方程;

(2)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,过点P的斜率不为零且互为相反数的两条直线分别交曲线CQ,R(异于点P),求直线QR的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x3﹣ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|﹣ 的零点不超过4个,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在轴非负半轴上,半径为2的圆C与直线相切.

(1)求圆C的方程;

(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:a1= ,an=an12+an1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并证明:2 ≤an 3
(Ⅱ)设数列{an2}的前n项和为An , 数列{ }的前n项和为Bn , 证明: = an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3。

(I)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;

(II)求证:平面A1ACC1⊥平面D1DB;

(III)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,试求E1F长度的最小值。

查看答案和解析>>

同步练习册答案