【题目】记min{x,y}= 设f(x)=min{x2 , x3},则( )
A.存在t>0,|f(t)+f(﹣t)|>f(t)﹣f(﹣t)
B.存在t>0,|f(t)﹣f(﹣t)|>f(t)﹣f(﹣t)
C.存在t>0,|f(1+t)+f(1﹣t)|>f(1+t)+f(1﹣t)
D.存在t>0,|f(1+t)﹣f(1﹣t)|>f(1+t)﹣f(1﹣t)
【答案】C
【解析】解:x2﹣x3=x2(1﹣x), ∴当x≤1时,x2﹣x3≥0,当x>1时,x2﹣x3<0,
∴f(x)= .
若t>1,则|f(t)+f(﹣t)|=|t2+(﹣t)3|=|t2﹣t3|=t3﹣t2 ,
|f(t)﹣f(﹣t)|=|t2+t3|=t2+t3 ,
f(t)﹣f(﹣t)=t2﹣(﹣t)3=t2+t3 ,
若0<t<1,|f(t)+f(﹣t)|=|t3+(﹣t)3|=0,
|f(t)﹣f(﹣t)|=|t3+t3|=2t3 ,
f(t)﹣f(﹣t)=t3﹣(﹣t)3=2t3 ,
当t=1时,|f(t)+f(﹣t)|=|1+(﹣1)|=0,
|f(t)﹣f(﹣t)|=|1﹣(﹣1)|=2,
f(t)﹣f(﹣t)=1﹣(﹣1)=2,
∴当t>0时,|f(t)+f(﹣t)|<f(t)﹣f(﹣t),|f(t)﹣f(﹣t)|=f(t)﹣f(﹣t),
故A错误,B错误;
当t>0时,令g(t)=f(1+t)+f(1﹣t)=(1+t)2+(1﹣t)3=﹣t3+4t2﹣t+2,
则g′(t)=﹣3t2+8t﹣1,令g′(t)=0得﹣3t2+8t﹣1=0,
∴△=64﹣12=52,∴g(t)有两个极值点t1 , t2 ,
∴g(t)在(t2 , +∞)上为减函数,
∴存在t0>t2 , 使得g(t0)<0,
∴|g(t0)|>g(t0),
故C正确;
令h(t)=(1+t)﹣f(1﹣t)=(1+t)2﹣(1﹣t)3=t3﹣2t2+5t,
则h′(t)=3t2﹣4t+5=3(t﹣ )2+ >0,
∴h(t)在(0,+∞)上为增函数,∴h(t)>h(0)=0,
∴|h(t)|=h(t),即|f(1+t)﹣f(1﹣t)|=f(1+t)﹣f(1﹣t),
故D错误.
故选C.
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,以的四个顶点为顶点的四边形的面积为.
(1)求椭圆的方程;
(2)设,分别为椭圆的左、右顶点,是直线上不同于点的任意一点,若直线,分别与椭圆相交于异于,的点、,试探究,点是否在以为直径的圆内?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在△ABC中,角A、B、C的对边分别为a、b、c,且满足cos2A﹣cos2B=2cos( ﹣A)cos( +A).
(1)求角B的值;
(2)若b= 且b≤a,求2a﹣c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两点,直线AM,BM相交于点M,且这两条直线的斜率之积为.
(1)求点M的轨迹方程;
(2)记点M的轨迹为曲线C,曲线C上在第一象限的点P的横坐标为1,过点P的斜率不为零且互为相反数的两条直线分别交曲线C于Q,R(异于点P),求直线QR的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= x3﹣ax2+3x+b(a,b∈R).
(Ⅰ)当a=2,b=0时,求f(x)在[0,3]上的值域.
(Ⅱ)对任意的b,函数g(x)=|f(x)|﹣ 的零点不超过4个,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆心在轴非负半轴上,半径为2的圆C与直线相切.
(1)求圆C的方程;
(2)设不过原点O的直线l与圆O:x2+y2=4相交于不同的两点A,B.①求△OAB的面积的最大值;②在圆C上,是否存在点M(m,n),使得直线l的方程为mx+ny=1,且此时△OAB的面积恰好取到①中的最大值?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:a1= ,an=an﹣12+an﹣1(n≥2且n∈N).
(Ⅰ)求a2 , a3;并证明:2 ﹣ ≤an≤ 3 ;
(Ⅱ)设数列{an2}的前n项和为An , 数列{ }的前n项和为Bn , 证明: = an+1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AB=4,AA1=2,点E1在棱C1D1上,且D1E1=3。
(I)在棱CD上确定一点E,使得直线EE1∥平面D1DB,并写出证明过程;
(II)求证:平面A1ACC1⊥平面D1DB;
(III)若动点F在正方形ABCD内,且AF=2,请说明点F的轨迹,试求E1F长度的最小值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com