【题目】已知在三棱柱中,平面ABC,,E,F分别是,的中点,
(1)求证:平面AEF﹔
(2)判断直线EF与平面的位置关系,并说明理由.
科目:高中数学 来源: 题型:
【题目】现代社会对破译密码的难度要求越来越高,有一处密码把英文的明文(真实名)按字母分解,其中英文a,b,c……,z这26个字母,依次对应1,2,3……,26这26个正整数.(见下表)
a | b | c | d | e | f | g | h | i | j | k | l | m |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
n | o | p | q | r | s | t | u | v | w | x | y | z |
14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 |
用如下变换公式:将明文转换成密码.如.即h变成q;再如:,即y变成m;按上述变换规则,若将明文译成的密码是gano,那么原来的明文是______________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦点与双曲线的焦点重合,过椭圆C的右顶点B任作一条直线,交抛物线于A,B两点,且,
(1)试求椭圆C的方程;
(2)过椭圆的右焦点且垂直于轴的直线交椭圆于两点,M,N是椭圆上位于直线两侧的两点.若,求证:直线MN的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线: ,在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,曲线: .
(Ⅰ)写出, 的直角坐标方程;
(Ⅱ)点, 分别是曲线, 上的动点,且点在轴的上侧,点在轴的左侧, 与曲线相切,求当最小时,直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆O:,直线l:.
(1)若直线l与圆O相切,求k的值;
(2)若直线l与圆O交于不同的两点A,B,当为锐角时,求k的取值范围;
(3)若,P是直线l上的动点,过P作圆O的两条切线PC,PD,切点为C,D,探究:直线CD是否过定点,若过定点,则求出该定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com