【题目】已知椭圆经过点,且离心率为,过其右焦点F的直线交椭圆C于M,N两点,交y轴于E点.若,.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试判断是否是定值.若是定值,求出该定值;若不是定值,请说明理由.
科目:高中数学 来源: 题型:
【题目】(Ⅰ)已知c>0,关于x的不等式:x+|x-2c|≥2的解集为R.求实数c的取值范围;
(Ⅱ)若c的最小值为m,又p、q、r是正实数,且满足p+q+r=3m,求证:p2+q2+r2≥3.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆:的左焦点为且离心率为,为椭圆上任意一点,的取值范围为,.
(1)求椭圆的方程;
(2)如图,设圆是圆心在椭圆上且半径为的动圆,过原点作圆的两条切线,分别交椭圆于,两点.是否存在使得直线与直线的斜率之积为定值?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高二年级学生某次数学考试成绩的分布情况,从该年级的1120名学生中随机抽取了100名学生的数学成绩,发现都在内现将这100名学生的成绩按照,,,,,,分组后,得到的频率分布直方图如图所示,则下列说法正确的是
A. 频率分布直方图中a的值为
B. 样本数据低于130分的频率为
C. 总体的中位数保留1位小数估计为分
D. 总体分布在的频数一定与总体分布在的频数相等
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、为抛物线上的两点,与的中点的纵坐标为4,直线的斜率为.
(1)求抛物线的方程;
(2)已知点,、为抛物线(除原点外)上的不同两点,直线、的斜率分别为,,且满足,记抛物线在、处的切线交于点,线段的中点为,若,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点的坐标分别为,.三角形的两条边,所在直线的斜率之积是.
(1)求点的轨迹方程;
(2)设直线方程为,直线方程为,直线交于,点,关于轴对称,直线与轴相交于点.若的面积为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的焦距与短轴长相等,长轴长为,设过右焦点F倾斜角为的直线交椭圆M于A、B两点.
(1)求椭圆M的方程;
(2)求证:
(3)设过右焦点F且与直线AB垂直的直线交椭圆M于C、D,求四边形ABCD面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com