精英家教网 > 高中数学 > 题目详情
8.复数z满足$\frac{z}{z-i}=i$,则$\overline z$=(  )
A.$\frac{1+i}{2}$B.$\frac{1-i}{2}$C.1+iD.1-i

分析 把已知等式变形,得到$z=\frac{1}{1-i}$,然后利用复数代数形式的乘除运算化简得答案.

解答 解:由$\frac{z}{z-i}=i$,得z=zi+1,
∴$z=\frac{1}{1-i}=\frac{1+i}{(1-i)(1+i)}=\frac{1+i}{2}$,
则$\overline{z}=\frac{1-i}{2}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查共轭复数的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.给出如下说法:
①命题“若x2-3x+2=0,则x=1”的逆否命题是“若x≠1,则x2-3x+2≠0”
②若命题p:?x∈R,x2+x+1=0,则¬p:?x∈R,x2+x+1≠0
③若p∧q为假命题,则p,q均为假命题
④“x>2”是“x2-3x+2>0”的充分不必要条件
其中正确命题的序号有①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}满足a1=1,an+1=3an
(1)求{an}的通项公式及前n项和Sn
(2)已知{bn}是等差数列,Tn为前n项和,且b1=a2,b2=a1+a2+a3,求T38

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正四棱柱中ABCD-A1B1C1D1,AB=1,D1B和平面ABCD所成的角的大小为$arctan\frac{{3\sqrt{2}}}{4}$,求该四棱柱的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正方体ABCD-A1B1C1D1的棱长为5.则直线BC到平面ADD1A1的距离为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.定义在(0,+∞)上的函数f(x)满足:f(x)>xf′(x),且f(2)=4,则不等式f(x)-2x>0的解集为(  )
A.(2,+∞)B.(0,2)C.(0,4)D.(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.数列$\left\{{{{({\frac{2}{3}})}^n},n∈N*}\right\}$所有项的和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,PA⊥ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.
(1)证明BE⊥DC;
(2)求二面角E-AB-P的值;
(3)求直线BE与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.通锡苏学大教育目前有高一、高二、高三年级学生人数分别为600人、588人、612人,现用分层抽样的方法从三个年级中抽取一些学生参加“我为国家添绿色”植树行动,若从高三年级抽取了51人,则三个年级共抽取的学生人数应为150.

查看答案和解析>>

同步练习册答案