精英家教网 > 高中数学 > 题目详情
以下几个命题中:其中真命题的序号为_________________(写出所有真命题的序号)
①设A、B为两个定点,k为非零常数,,则动点P的轨迹为双曲线;
②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若则动点P的轨迹为椭圆;
③双曲线有相同的焦点;
④在平面内,到定点的距离与到定直线的距离相等的点的轨迹是抛物线.

试题分析:因为到两定点距离差的绝对值为一个小于两定点间距离的常数的点的轨迹是双曲线,所以①不对.因为所以中点.由于垂直于,所以动点P的轨迹为以为直径的圆,因此②不对.双曲线的焦点都在轴上,且半焦距都为,所以③对. 因为点在直线上,所以满足条件的点的轨迹是过点且与直线的直线,所以④不对.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,短轴的端点分别为,且.
(1)求椭圆的方程;
(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;
(2)点在圆上,且在第一象限,过作圆的切线交椭圆于,两点,问:△的周长是否为定值?如果是,求出定值;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为
(1)求双曲线的方程;
(2)用表示点的坐标;
(3)若的中垂线交轴于点,直线轴于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若存在过点的直线与曲线都相切,则等于 (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于曲线=1,给出下面四个命题:
(1)曲线不可能表示椭圆;
(2)若曲线表示焦点在x轴上的椭圆,则1<
(3)若曲线表示双曲线,则<1或>4;
(4)当1<<4时曲线表示椭圆,其中正确的是(      )
A.(2)(3)B.(1)(3)C.(2)(4)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F是椭圆C:+=1(a>b>0)的右焦点,点P在椭圆C上,线段PF与圆(x-2+y2=相切于点Q,且=2,则椭圆C的离心率等于(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案