【题目】已知函数,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有成立,求实数的取值范围.
【答案】(1);(2).
【解析】
试题分析:(1),定义域为,,依题意,解得;(2)对任意的都有成立等价于对任意的都有.利用导数,求得在上是增函数,最大值.而,由此,对分成,,三段,来讨论的最大值,最后求得的取值范围为.
试题解析:
(1)∵,∴,其定义域为,
∴,∵是函数的极值点,∴,即,
∵,∴.经检验当时,是函数的极值点,∴.
(2)对任意的都有成立等价于
对任意的都有,
当时,,∴函数在上是增函数,
∴.
∵,且,.
①当且时,,
∴函数在上是增函数,∴,
由,得,又,∴不合题意.
②当时,若,则,若时,,
∴函数在上是减函数,在上是增函数,
∴,由,得,又,∴.
③当且时,,
∴函数在上是减函数,∴,
由,得,又,∴,
综上所述,的取值范围为.
科目:高中数学 来源: 题型:
【题目】已知五边形由直角梯形与直角△构成,如图1所示,,,,且,将梯形沿着折起,形成如图2所示的几何体,且使平面平面.
(1)在线段上存在点,且,证明:平面;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解某校学生的视力情况,现采用随机抽样的方式从该校的两班中各抽5名学生进行视力检测,检测的数据如下:
班5名学生的视力检测结果是: .
班5名学生的视力检测结果是: .
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?并计算班的5名学生视力的方差;
(2)现从班上述5名学生中随机选取2名,求这2名学生中至少有1名学生的视力低于的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有6名奥运会志愿者,其中志愿者通晓日语, 通晓俄语, 通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(1)求被选中的概率;
(2)求和不全被选中的概率;
(3)若6名奥运会志愿者每小时派两人值班,现有两名只会日语的运动员到来,求恰好遇到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是直线和上的两个动点,线段的长为,是的中点.
(1)求动点的轨迹的方程;
(2)若过点(1,0)的直线与曲线交于不同两点.
①当时,求直线的方程;
②试问在轴上是否存在点,使恒为定值?若存在,求出点的坐标及定值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆外的有一点,过点作直线.
(1)当直线过圆心时,求直线的方程;
(2)当直线与圆相切时,求直线的方程;
(3)当直线的倾斜角为时,求直线被圆所截得的弦长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,点是直线上的一动点,过点作圆的切线,切点为.
(1)当切线的长度为时,求点的坐标;
(2) 若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.
(3)求线段长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,矩形ABCD的一边AB在x轴上,另一边CD在x轴上方,且AB=8,BC=6,其中A(-4,0)、B(4,0)
(1)若A、B为椭圆的焦点,且椭圆经过C、D两点,求该椭圆的方程;
(2)若A、B为双曲线的焦点,且双曲线经过C、D两点,求双曲线的方程;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com