精英家教网 > 高中数学 > 题目详情

【题目】某公司为了解用户对其产品的满意度,从甲、乙两地区分别随机调查了100个用户,根据用户对产品的满意度评分,分别得到甲地区和乙地区用户满意度评分的频率分布直方图.

若甲地区和乙地区用户满意度评分的中位数分别为m1m2;平均数分别为s1s2,则下面正确的是(  )

A. m1m2s1s2B. m1m2s1s2

C. m1m2s1s2D. m1m2s1s2

【答案】C

【解析】

利用频率分布直方图分别求出甲地区和乙地区用户满意度评分的中位数和平均数,由此能求出结果.

由频率分布直方图得:

甲地区[40,60)的频率为:(0.015+0.020)×10=0.35,[60,70)的频率为0.025×10=0.25,

∴甲地区用户满意度评分的中位数m1=6066,

甲地区的平均数s1=45×0.015×10+55×0.020×10+65×0.025×10+75×0.020×10+85×0.010×10+95×0.010×10=67.

乙地区[50,70)的频率为:(0.005+0.020)×10=0.25,[70,80)的频率为:0.035×10=0.35,

∴乙地区用户满意度评分的中位数m2=7010≈77.1,

乙地区的平均数s2=55×0.005×10+65×0.020×10+75×0.035×10+85×0.025×10+95×0.015×10=77.5.

m1m2s1s2

故答案为:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人口逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:

平均每周进行长跑训练天数

不大于2

3天或4

不少于5

人数

30

130

40

若某人平均每周进行长跑训练天数不少于5天,则称其为“热烈参与者”,否则称为“非热烈参与者”.

1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数;

2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?

热烈参与者

非热烈参与者

合计

140

55

合计

附:k2=n为样本容量)

Pk2k0

0.500

0.400

0.250

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某种细菌的适宜生长温度为10℃~25℃,为了研究该种细菌的繁殖数量(单位:个)随温度(单位:℃)变化的规律,收集数据如下:

温度/℃

12

14

16

18

20

22

24

繁殖数量/个

20

25

33

27

51

112

194

对数据进行初步处理后,得到了一些统计量的值,如下表所示:

18

66

3.8

112

4.3

1428

20.5

其中.

(1)请绘出关于的散点图,并根据散点图判断哪一个更适合作为该种细菌的繁殖数量关于温度的回归方程类型(给出判断即可,不必说明理由);

(2)根据(1)的判断结果及表格数据,建立关于的回归方程(结果精确到0.1);

(3)当温度为25℃时,该种细菌的繁殖数量的预报值为多少?

参考公式:对于一组数据,其回归直线的斜率和截距的最小二成估计分别为.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在小正方形边长为1的网格中画出了某多面体的三视图,则该多面体的外接球表面积为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆,抛物线的顶点为,准线的方程为为抛物线上的动点,过点作圆的两条切线与轴交于.

(Ⅰ)求抛物线的方程;

(Ⅱ)若,求△面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的四个顶点组成的四边形的面积为,且经过点

1求椭圆的方程;

2若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于两点,与交于点,四边形的面积分别为的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别为双曲线的左、右焦点,点P是以为直径的圆与C在第一象限内的交点,若线段的中点QC的渐近线上,则C的两条渐近线方程为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是( )

A.命题“若,则”的否命题是“若,则

B.”是“双曲线的离心率大于”的充要条件

C.命题“”的否定是“

D.命题“在中,若,则是锐角三角形”的逆否命题是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数,)以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)设曲线交于两点,点,若成等比数列,求的值.

查看答案和解析>>

同步练习册答案