【题目】如图,在凸四边形中,,则四边形的面积最大值为_____.
【答案】
【解析】
连接AC,在三角形ACD中,运用余弦定理,可得AC,再由三角形的面积公式,结合两角差的正弦公式,以及正弦函数的值域,即可得到所求最大值.
连接AC,在三角形ACD中,
由余弦定理可得AC2=AD2+CD2﹣2ADCDcosD
=16+4﹣2×4×2cosD
=20﹣16cosD,
在三角形ABC中,,
∴三角形ABC为等边三角形,
又四边形ABCD的面积为S=S△ABC+S△ACD
AC2ADCDsinD
(20﹣16cosD)+4sinD
=5+4(sinD﹣cosD)
=5+8sin(D﹣60°),
当D﹣60°=90°,即D=150°时,
sin(D﹣60°)取得最大值1,
四边形ABCD的面积取得最大值为.
故答案为.
科目:高中数学 来源: 题型:
【题目】设有下面四个命题
p1:若复数z满足 ∈R,则z∈R;
p2:若复数z满足z2∈R,则z∈R;
p3:若复数z1 , z2满足z1z2∈R,则z1= ;
p4:若复数z∈R,则 ∈R.
其中的真命题为( )
A.p1 , p3
B.p1 , p4
C.p2 , p3
D.p2 , p4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若集合A={x|log4x≤ },B={x|(x+3)( x﹣1)≥0},则A∩(RB)=( )
A.(0,1]
B.(0,1)
C.[1,2]
D.[0,1]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】研究发现,北京 PM 2.5 的重要来源有土壤尘、燃煤、生物质燃烧、汽车尾气与垃圾焚烧、工业污染和二次无机气溶胶,其中燃煤的平均贡献占比约为 18%.为实现“节能减排”,还人民“碧水蓝天”,北京市推行“煤改电”工程,采用空气源热泵作为冬天供暖.进入冬季以来,该市居民用电量逐渐增加,为保证居民取暖,市供电部门对该市 100 户居民冬季(按 120 天计算)取暖用电量(单位:度)进行统计分析,得到居民冬季取暖用电量的频率分布直方图如图所示.
(1)求频率分布直方图中的值;
(2)从这 100 户居民中随机抽取 1 户进行深度调查,求这户居民冬季取暖用电量在[3300,3400]的概率;
(3)在用电量为[3200,3250),[3250,3300),[3300,3350),[3350,3400]的四组居民中,用分层抽样的方法抽取 34 户居民进行调查,则应从用电量在[3200,3250)的居民中抽取多少户?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在独立性检验中,统计量有三个临界值:2.706,3.841和6.635.当时,有90%的把握说明两个事件有关;当时,有95%的把握说明两个事件有关,当时,有99%的把握说明两个事件有关,当时,认为两个事件无关.在一项打鼾与心脏病的调查中,共调查了2000人,经计算.根据这一数据分析,认为打鼾与患心脏病之间( )
A. 有95%的把握认为两者有关 B. 约95%的打鼾者患心脏病
C. 有99%的把握认为两者有关 D. 约99%的打鼾者患心脏病
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com