精英家教网 > 高中数学 > 题目详情
13.已知a>b,c>d,且c,d不为零,那么(  )
A.ad>bcB.ac>bdC.a-c>b-dD.a-d>b-c

分析 特殊值法判断A、B,根据不等式的性质判断C、D.

解答 解:对于A,令a=4,b=2,c=5,d=1,显然不成立,
对于B,令a=2,b=-1,c=-1,b=-2,显然不成立,
对于C,a>b,-c<-d,故a-c<b-d,故C不成立,
对于D,a>b,-d>-c,a-d>b-c,故D正确,
故选:D.

点评 本题考查了不等式的性质,考查特殊值法的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为(0,2),且离心率为$\frac{2\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)从椭圆C上一点M向圆x2+y2=1上引两条切线,切点分别为A、B,当直线AB分别与x轴、y轴交于P、Q两点时,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a≠0,a∈R,则抛物线y=ax2的焦点坐标为(  )
A.(0,$\frac{1}{4a}$)B.($\frac{a}{2}$,0)C.(0,$\frac{1}{2a}$)D.($\frac{a}{4}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知随机变量X的分布列如下:
 X 1 2
 P $\frac{49}{84}$ a $\frac{9}{84}$ $\frac{1}{84}$
则a=$\frac{25}{84}$,数学期望E(X)=$\frac{65}{42}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.△ABC的两边长为2,3,其夹角的余弦为$\frac{1}{3}$,则其外接圆半径为(  )
A.$\frac{{9\sqrt{2}}}{2}$B.$\frac{{9\sqrt{2}}}{4}$C.$\frac{{9\sqrt{2}}}{8}$D.$\frac{{2\sqrt{2}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列说法错误的是(  )
A.命题“?x∈R,x2-2x+1<0”的否定是“?x∈R,x2-2x+1≥0”
B.命题“若m>0,则方程x2+x-m=0有实根”的逆命题为真命题
C.命题“若a>b,则ac2>bc2”的否命题为真命题
D.若命题“¬p∨q”为假命题,则“p∧¬q”为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.方程$\frac{x|x|}{81}+\frac{y|y|}{49}=λ(λ<0)$的曲线即为y=f(x)的图象,对于函数y=f(x),下列命题中正确的是②③⑤.(请写出所有正确命题的序号)
①函数y=f(x)的图象关于直线y=x对称;
②函数y=f(x)在R上是单调递减函数;
③函数y=f(x)的图象不经过第一象限;
④函数F(x)=9f(x)+7x至少存在一个零点;
⑤函数y=f(x)的值域是R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体外接球的表面积为(  )
A.B.$\frac{25}{2}$πC.$\frac{41}{4}$πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的最下正周期为π,且点P($\frac{π}{6}$,2)是该函数图象的一个人最高点.
(1)求函数f(x)的解析式;
(2)若x∈[-$\frac{π}{2}$,0],求函数y=f(x)的值域;
(3)把函数y=f(x)的图线向右平移θ(0<θ<$\frac{π}{2}$)个单位,得到函数y=g(x)在[0,$\frac{π}{4}$]上是单调增函数,求θ的取值范围.

查看答案和解析>>

同步练习册答案