精英家教网 > 高中数学 > 题目详情

已知函数

(1)若函数处取得极大值,求函数的单调区间

(2)若对任意实数,不等式恒成立,求的取值范围

 

【答案】

(1)   函数的增区间为 减区间为;(2)

【解析】

试题分析:(1) ,且在处取极大值,则

,解得

时,,在处取极小值

时,,在处取极大值

所以  函数的增区间为 减区间为

(2)因为,则

即为

则有恒成立,则

解得:

考点:应用导数研究函数的单调性,不等式恒成立问题。

点评:中档题,本题属于导数的基本应用问题。在某区间,导数值非负,函数为增函数,导数值非正,函数为减函数。涉及不等式恒成立问题,往往通过构造函数,确定函数的最值,达到解题目的。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga
2m-1-mxx+1
(a>0,a≠1)
是奇函数,定义域为区间D(使表达式有意义的实数x 的集合).
(1)求实数m的值,并写出区间D;
(2)若底数a>1,试判断函数y=f(x)在定义域D内的单调性,并说明理由;
(3)当x∈A=[a,b)(A⊆D,a是底数)时,函数值组成的集合为[1,+∞),求实数a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=px-
px
-2lnx、
(Ⅰ)若p=3,求曲f9想)在点(1,f(1))处的切线方程;
(Ⅱ)若p>0且函f(x)在其定义域内为增函数,求实数p的取值范围;
(Ⅲ)若函数y=f(x)在x∈(0,3)存在极值,求实数p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+bx+c为R上的奇函数,且当x=1时,有极小值-1;函g(x)=-
1
2
x3+
3
2
x+t-
3
t
(t∈R,t≠0)

(1)求函数f(x)的解析式;
(2)若对于任意x∈[-2,2],恒有f(x)>g(x),求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
x2-3x-
3
4
.定义函数f(x)与实数m的一种符号运算为m?f(x)=f(x)•[f(x+m)-f(x)].
(1)求使函数值f(x)大于0的x的取值范围;
(2)若g(x)=4?f(x)+
7
2
x2
,求g(x)在区间[0,4]上的最大值与最小值;
(3)是否存在一个数列{an},使得其前n项和Sn=4?f(n)+
7
2
n2
.若存在,求出其通项;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=logax(a>0,且a≠1)自变量与函数值的部分对应值如下表:
x 2 1 0.25
f(x) -1 0 2
则a=
1
2
1
2
;若函数g(x)=xf(x),则满足条件g(x)>0的x的集合为
{x|0<x<1}
{x|0<x<1}

查看答案和解析>>

同步练习册答案