已知椭圆的离心率为,过的左焦点的直线被圆截得的弦长为.
(1)求椭圆的方程;
(2)设的右焦点为,在圆上是否存在点,满足,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.
(1);(2)圆上存在两个不同点,满足..
解析试题分析:本题主要考查椭圆的标准方程、点到直线的距离公式、垂径定理、圆的标准方程、两个圆的位置关系等基础知识,考查学生的分析问题解决问题的能力、计算能力,考查学生的数形结合思想.第一问,利用直线方程得到椭圆的左焦点坐标,再结合离心率,得到椭圆的标准方程;第二问,利用点到直线的距离求出圆心到直线的距离,由已知弦长为,则由垂径定理得到圆的半径,从而得到圆的标准方程,利用两点间的距离公式得到和,代入已知中,得到P点的轨迹方程为圆,利用两个圆的位置关系判断两个圆相交,所以存在点P.
因为直线的方程为,
令,得,即 1分
∴ ,又∵,
∴ ,
∴椭圆的方程为. 4分
(2)∵圆心到直线的距离为,
又直线被圆截得的弦长为,
∴由垂径定理得,
故圆的方程为. 8分
设圆上存在点,满足即,
且的坐标为,
则,整理得,它表示圆心在,半径是的圆。
∴ 12分
故有,即圆与圆相交,有两个公共点。
∴圆上存在两个不同点,满足. 14分
考点:椭圆的标准方程、点到直线的距离公式、垂径定理、圆的标准方程、两个圆的位置关系.
科目:高中数学 来源: 题型:解答题
如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.
(1)求的值;
(2)过点的直线与分别交于(均异于点),若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆上任一点,点到直线的距离为,到点的距离为,且.直线与椭圆交于不同两点、(,都在轴上方) ,且.
(1)求椭圆的方程;
(2)当为椭圆与轴正半轴的交点时,求直线方程;
(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆:的左顶点为,直线交椭圆于两点(上下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,是抛物线为上的一点,以S为圆心,r为半径()做圆,分别交x轴于A,B两点,连结并延长SA、SB,分别交抛物线于C、D两点。
(1)求证:直线CD的斜率为定值;
(2)延长DC交x轴负半轴于点E,若EC : ED =" 1" : 3,求的值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.
(1)求椭圆的标准方程;
(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知双曲线C:离心率是,过点,且右支上的弦过右焦点.
(1)求双曲线C的方程;
(2)求弦的中点的轨迹E的方程;
(3)是否存在以为直径的圆过原点O?,若存在,求出直线的斜率k 的值.若不存在,则说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(2013·上海高考)如图,已知双曲线C1:-y2=1,曲线C2:|y|=|x|+1.P是平面内一点.若存在过点P的直线与C1,C2都有共同点,则称P为“C1-C2型点”.
(1)在正确证明C1的左焦点是“C1-C2型点”时,要使用一条过该焦点的直线,试写出一条这样的直线的方程(不要求验证).
(2)设直线y=kx与C2有公共点,求证|k|>1,进而证明原点不是“C1-C2型点”.
(3)求证:圆x2+y2=内的点都不是“C1-C2型点”.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com