【题目】已知椭圆C:=1(a>b>0),点A、B分别是椭圆C的左顶点和上顶点,直线AB与圆G:x2+y2=(c是椭圆的半焦距)相离,P是直线AB上一动点,过点P作圆G的两切线,切点分别为M、N.
(1)若椭圆C经过两点、,求椭圆C的方程;
(2)当c为定值时,求证:直线MN经过一定点E,并求·的值(O是坐标原点);
(3)若存在点P使得△PMN为正三角形,试求椭圆离心率的取值范围..
【答案】(1)=1.(2)见解析(3)
【解析】(1)解:令椭圆mx2+ny2=1,其中m=,n=,得所以m=,n=,即椭圆方程为=1.
(2)证明:直线AB:=1,设点P(x0,y0),则OP的中点为,所以点O、M、P、N所在的圆的方程为=,化简为x2-x0x+y2-y0y=0,与圆x2+y2=作差,即直线MN:x0x+y0y=.
因为点P(x0,y0)在直线AB上,得=1,
所以x0 +=0,即
得x=-,y=,故定点E ,·==.
(3)解:由直线AB与圆G:x2+y2= (c是椭圆的焦半距)相离,则>,即4a2b2>c2(a2+b2),4a2(a2-c2)>c2(2a2-c2),得e4-6e2+4>0.因为0<e<1,所以0<e2<3- ①.连结ON、OM、OP,若存在点P使△PMN为正三角形,则在Rt△OPN中,OP=2ON=2r=c,所以≤c,a2b2≤c2(a2+b2),a2(a2-c2)≤c2(2a2-c2),得e4-3e2+1≤0.因为0<e<1,所以≤e2<1,②.由①②得≤e2<3-,所以
科目:高中数学 来源: 题型:
【题目】对于数列,定义, .
(1) 若,是否存在,使得?请说明理由;
(2) 若, ,求数列的通项公式;
(3) 令,求证:“为等差数列”的充要条件是“的前4项为等差数列,且为等差数列”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程为.
(1)设椭圆的左右焦点分别为、,点在椭圆上运动,求的值;
(2)设直线和圆相切,和椭圆交于、两点,为原点,线段、分别和圆交于、两点,设、的面积分别为、,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列共有项,记该数列前项中的最大项为,该数列后项中的最小项为,.
(1)若数列的通项公式为,求数列的通项公式;
(2)若数列满足,,求数列的通项公式;
(3)试构造一个数列,满足,其中是公差不为零的等差数列,是等比数列,使得对于任意给定的正整数,数列都是单调递增的,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高三年级某班50名学生期中考试数学成绩的频率分布直方图如图所示,成绩分组区间为:.其中a,b,c成等差数列且.物理成绩统计如表.(说明:数学满分150分,物理满分100分)
分组 | |||||
频数 | 6 | 9 | 20 | 10 | 5 |
(1)根据频率分布直方图,请估计数学成绩的平均分;
(2)根据物理成绩统计表,请估计物理成绩的中位数;
(3)若数学成绩不低于140分的为“优”,物理成绩不低于90分的为“优”,已知本班中至少有一个“优”同学总数为6人,从数学成绩为“优”的同学中随机抽取2人,求两人恰好均为物理成绩“优”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线过点,且P到抛物线焦点的距离为2直线过点,且与抛物线相交于A,B两点.
(Ⅰ)求抛物线的方程;
(Ⅱ)若点Q恰为线段AB的中点,求直线的方程;
(Ⅲ)过点作直线MA,MB分别交抛物线于C,D两点,请问C,D,Q三点能否共线?若能,求出直线的斜率;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);
(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为“优秀”等次,则根据频率分布直方图估计该校高一学生数学成绩达到“优秀”等次的人数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.
(1)证明:AD⊥BA1;
(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com