精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC的三个顶点的坐标为A(0,1),B(1,0),C(0,﹣2),O为坐标原点,动点M满足| |=1,则| + + |的最大值是(
A.
B.
C. ﹣1
D. ﹣1

【答案】A
【解析】解:设点M的坐标是(x,y), ∵C(0,﹣2),且| |=1,
,则x2+(y+2)2=1,
即动点M的轨迹是以C为圆心、1为半径的圆,
∵A(0,1),B(1,0),
+ + =(x+1,y+1),
则| + + |= ,几何意义表示:
点M(x,y)与点A(﹣1,﹣1)之间的距离,即圆C上的点与点A(﹣1,﹣1)的距离,
∵点A(﹣1,﹣1)在圆C外部,
∴| + + |的最大值是|AC|+1= +1=
故选A.
【考点精析】掌握平面向量的坐标运算是解答本题的根本,需要知道坐标运算:设;;设,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设△AnBnCn的三边长分别为an , bn , cn , n=1,2,3…,若b1>c1 , b1+c1=2a1 , an+1=an , bn+1= ,cn+1= ,则∠An的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位:cm)频数分布表如表1、表2. 表1:男生身高频数分布表

身高(cm)

[160,165)

[165,170)

[170,175)

[175,180)

[180,185)

[185,190)

频数

2

5

14

13

4

2

表2:女生身高频数分布表

身高(cm)

[150,155)

[155,160)

[160,165)

[165,170)

[170,175)

[175,180)

频数

1

7

12

6

3

1


(1)求该校高一女生的人数;
(2)估计该校学生身高在[165,180)的概率;
(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设X表示身高在[165,180)学生的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|,若不等式f(x)≤3的解集为{|x|﹣1≤x≤5}. (Ⅰ)求实数a的值:
(Ⅱ)若不等式f(3x)+f(x+3)≥m对一切实数x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.
(1)当a=﹣1时,求f(x)的最大值;
(2)若f(x)在区间(0,e]上的最大值为﹣3,求a的值;
(3)设g(x)=xf(x),若a>0,对于任意的两个正实数x1 , x2(x1≠x2),证明:2g( )<g(x1)+g(x2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌的汽车4S店,对最近100例分期付款购车情况进行统计,统计结果如表所示,已知分9期付款的频率为0.4;该店经销一辆该品牌的汽车.若顾客分3期付款,其利润为1万元;分6期或9期付款,其利润为2万元;分12期付款,其利润为3万元.

付款方式

分3期

分6期

分9期

分12期

频数

20

20

a

b


(1)若以表中计算出的频率近似替代概率,从该店采用分期付款购车的顾客(数量较大)中随机抽取3位顾客,求事件A:“至多有1位采用分6期付款”的概率P(A);
(2)按分层抽样的方式从这100位顾客中抽出5人,再从抽出的5人中随机抽取3人,记该店在这3人身上赚取的总利润为随机变量η,求η的分布列及数学期望E(η).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a,b的值分别是21,28,则输出a的值为(
A.14
B.7
C.1
D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}和{bn}中,a1= ,{an}的前n项为Sn , 满足Sn+1+( n+1=Sn+( n(n∈N*),bn=(2n+1)an , {bn}的前n项和为Tn
(1)求数列{bn}的通项公式bn以及Tn
(2)若T1+T3 , mT2 , 3(T2+T3)成等差数列,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在(0,+∞)上的函数f(x)满足f′(x)+2f(x)= ,且f(1)= ,则不等式f(lnx)>f(3)的解集为(
A.(﹣∞,e3
B.(0,e3
C.(1,e3
D.(e3 , +∞)

查看答案和解析>>

同步练习册答案