分析 利用向量垂直与数量积的关系可得AD⊥BC,利用向量共线定理可得|$\overrightarrow{BD}$|与|$\overrightarrow{DC}$|的值,利用勾股定理可得|$\overrightarrow{AD}$|的值,再建立直角坐标系,利用向量的坐标运算和数量积运算即可求出.
解答 解:△ABC中,$\overrightarrow{AD}•\overrightarrow{BC}=0$,
∴$\overrightarrow{AD}$⊥$\overrightarrow{BC}$,即AD⊥BC;
∵|$\overrightarrow{BC}$|=5,$\overrightarrow{BD}$=$\frac{2}{3}$$\overrightarrow{DC}$,
∴|$\overrightarrow{BD}$|=$\frac{2}{3}$|$\overrightarrow{DC}$|,
即|$\overrightarrow{BD}$|=2,|$\overrightarrow{DC}$|=3;
又|$\overrightarrow{AB}$|=3,∴|$\overrightarrow{AD}$|=$\sqrt{5}$.
如图所示,建立直角坐标系.
则D(0,0),A(0,$\sqrt{5}$),B(-2,0),C(3,0).
∴$\overrightarrow{AB}$=(-2,-$\sqrt{5}$),$\overrightarrow{AC}$=(3,-$\sqrt{5}$),$\overrightarrow{AD}$=(0,-$\sqrt{5}$).
点P满足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+(1-λ)$\overrightarrow{AC}$,
∴$\overrightarrow{AP}$=λ(-2,-$\sqrt{5}$)+(1-λ)(3,-$\sqrt{5}$)=(3-5λ,-$\sqrt{5}$),
∴$\overrightarrow{AP}$•$\overrightarrow{AD}$=(3-5λ,-$\sqrt{5}$)•(0,-$\sqrt{5}$)=5.
故答案为:5.
点评 本题考查了向量的坐标运算和数量积运算、向量垂直与数量积的关系等基础知识与基本技能方法,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 15 | B. | 20 | C. | 25 | D. | 30 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -$\frac{21}{8}$ | B. | $\frac{21}{8}$ | C. | -9 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 终边在x轴上角的集合是{α|α=kπ,k∈Z} | |
B. | 终边在y轴上角的集合是$\{α|α=\frac{π}{2}+kπ,k∈Z\}$ | |
C. | 终边在坐标轴上的角的集合是$\{α|α=k•\frac{π}{2},k∈Z\}$ | |
D. | 终边在直线y=-x上角的集合是 $\{α|α=\frac{π}{4}+2kπ,k∈Z\}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com