精英家教网 > 高中数学 > 题目详情

【题目】数列中,若对任意都有为常数)成立,则称为“等差比数列”,下面对“等差比数列” 的判断:①不可能为;②等差数列一定是等差比数列; ③等比数列一定是等差比数列 ;④通项公式为(其中,且)的数列一定是等差比数列,其中正确的判断是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

【答案】C

【解析】分析:当时,则数列成了常数列,则分母也为0,进而推断出,得出①是正确的,当等差数列和等比数列为常数列时不满足题设条件,排除②③,把④的通项公式代入题设中,满足条件,进而推断④是正确的.

详解:对于①中,若时,则分母也为0,所以,得出①是正确;

当当等差数列和等比数列为常数列时不满足题设条件,排除②③,

对于④中,把代入结果为(常数),所以是正确的,

综上所述,正确的命题为①④,故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知平行四边形 的三个顶点坐标为 .
(Ⅰ)求顶点 的坐标;
(Ⅱ)求四边形 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,它的前项和为,且

(Ⅰ)求

(Ⅱ)已知等比数列满足 ,设数列的前项和为,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 的方程为 ,直线 的方程为 ,点 在直线 上,过点 作圆 的切线 ,切点为 .
(1)若点 的坐标为 ,求切线 的方程;
(2)求四边形 面积的最小值;
(3)求证:经过 三点的圆必过定点,并求出所有定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别求适合下列条件的椭圆的标准方程.
(1)焦点在坐标轴上,且经过点A ( ,-2),B(-2 ,1);
(2)与椭圆 有相同焦点且经过点M( ,1).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为调查高一、高二学生周日在家学习用时情况,随机抽取了高一、高二各人,对他们的学习时间进行了统计,分别得到了高一学生学习时间(单位:小时)的频数分布表和高二学生学习时间的频率分布直方图.

高一学生学习时间的频数分布表(学习时间均在区间内):

学习时间

频数

3

1

8

4

2

2

高二学生学习时间的频率分布直方图:

(1)求高二学生学习时间的频率分布直方图中的并根据此频率分布直方图估计该校高二学生学习时间的中位数

(2)利用分层抽样的方法,从高一学生学习时间在的两组里随机抽取再从这人中随机抽取求学习时间在这一组中至少有人被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场经营某种商品,在某周内获纯利(元)与该周每天销售这种商品数之间的一组数据关系如表:

(I)画出散点图;

(II)求纯利与每天销售件数之间的回归直线方程;

(III)估计当每天销售的件数为12件时,每周内获得的纯利为多少?

附注:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆 过定点 ,且在定圆 的内部与其相内切.
(1)求动圆圆心 的轨迹方程
(2)直线 交于 两点,与圆 交于 两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为 ,其准线与 轴交于点 ,过 作斜率为 的直线 与抛物线交于 两点,弦 的中点为 的垂直平分线与 轴交于
(1)求 的取值范围;
(2)求证: .

查看答案和解析>>

同步练习册答案