精英家教网 > 高中数学 > 题目详情

定义

   (1)令函数的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O作曲线C1的切线,切点为B(n,t)(n>0),设曲线C1在点A、B之间的曲线段与线段OA、OB所围成图形的面积为S,求S的值。

   (2)当

   (3)令函数的图象为曲线C2,若存在实数b使得曲线C2处有斜率为-8的切线,求实数a的取值范围。

解:(1)

,故A(0,9)

又过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),

 

                      

   (2)令

又令

单调递减.

单调递减,

   (3)

设曲线处有斜率为-8的切线,

①②③

 
又由题设

∴存在实数b使得     有解,

由①得代入③得

有解,得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数f(x)=
5x-ax+2
在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁省丹东市高三上学期期末考试数学试卷(解析版) 题型:选择题

下列说法中

①  若定义在R上的函数满足,则6为函数的周期;

② 若对于任意,不等式恒成立,则

③ 定义:“若函数对于任意R,都存在正常数,使恒成立,则称函数为有界泛函.”由该定义可知,函数为有界泛函;

④对于函数 设,…,),令集合,则集合为空集.正确的个数为

A.1个             B.2个              C.3个              D.4个

 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

给出函数封闭的定义:若对于定义域D内的任意一个自变量x0,都有函数值f(x0)∈D,称函数y=f(x)在D上封闭.
(1)若定义域D1=(0,1),判断函数g(x)=2x-1是否在D1上封闭,并说明理由;
(2)若定义域D2=(1,5],是否存在实数a,使得函数数学公式在D2上封闭?若存在,求出a的取值范围;若不存在,请说明理由.
(3)利用(2)中函数,构造一个数列{xn},方法如下:对于给定的定义域D2=(1,5]中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…在上述构造数列的过程中,如果xi(i=1,2,3,4…)在定义域中,构造数列的过程将继续下去;如果xi不在定义域中,则构造数列的过程停止.
①如果可以用上述方法构造出一个无穷常数列{xn},求实数a的取值范围.
②如果取定义域中任一值作为x1,都可以用上述方法构造出一个无穷数列{xn},求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法中:
①若定义在R上的函数f(x)满足f(x+2)=-f(x-1),则6为函数f(x)的周期;
②若对于任意x∈(1,3),不等式x2-ax+2<0恒成立,则a>
11
3

③定义:“若函数f(x)对于任意x∈R,都存在正常数M,使|f(x)|≤M|x|恒成立,则称函数f(x)为有界泛函.”由该定义可知,函数f(x)=x2+1为有界泛函;
④对于函数f(x)=
x-1
x+1
,设f2(x)=f[f(x)],f3(x)=f[f2(x)],…,fn+1(x)=f[fn(x)](n∈N*且n≥2),令集合M={x|f2009(x)=x,x∈R},则集合M为空集.
正确的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案