精英家教网 > 高中数学 > 题目详情

【题目】椭圆的左、右焦点分别为,椭圆上一点的距离之和为,且焦距是短轴长的2.

1)求椭圆的方程;

2)过线段上一点的直线(斜率不为0)与椭圆相交于两点,当的面积与的面积之比为时,求面积的最大值.

【答案】1;(2

【解析】

1)由题意结合椭圆的定义可得,再由求得后,即可得解;

2)转化条件得直线过定点,设直线的方程为,联立方程组利用韦达定理可得的面积,换元后利用二次函数的性质即可得解.

1)由题可知.

,所以

所以,所以,解得(舍去),

从而椭圆的方程为

2)由题意可得

因为的面积与的面积之比为13,所以直线过定点

设直线的方程为

联立

所以

所以的面积

.

,则

所以

所以当时,最大,最大值为

所以面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点恰好是双曲线的一个焦点,且两条曲线交点的连线过点,则该双曲线的离心率为( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚棋子放在一个的棋盘上,记为从左、上数第行第列的小方格,求所有的四元数组,使得从出发,经过每个小方格恰一次到达(每步为将棋子从一个小方格移到与之有共同边的另一个小方格).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题方程表示双曲线命题不等式的解集是. 为假 为真的取值范围.

【答案】

【解析】试题分析:由命题方程表示双曲线,求出的取值范围,由命题不等式的解集是,求出的取值范围,由为假, 为真,得出一真一假,分两种情况即可得出的取值范围.

试题解析:

范围为

型】解答
束】
18

【题目】如图,设是圆上的动点轴上的投影 上一点.

1)当在圆上运动时求点的轨迹的方程

2)求过点且斜率为的直线被所截线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一个三角形的边长与面积都是整数,则称为“海伦三角形”;三边长互质的海伦三角形,称为“本原海伦三角形”;边长都不是3的倍数的本原海伦三角形,称为“奇异三角形”.

(1)求奇异三角形的最小边长的最小值;

(2)求证:等腰的奇异三角形有无数个;

(3)问:非等腰的奇异三角形有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在常数a,b,c,使等式N+都成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某篮球运动员的投篮命中率为,他想提高自己的投篮水平,制定了一个夏季训练计划为了了解训练效果,执行训练前,他统计了10场比赛的得分,计算出得分的中位数为15分,平均得分为15分,得分的方差为执行训练后也统计了10场比赛的得分,成绩茎叶图如图所示:

请计算该篮球运动员执行训练后统计的10场比赛得分的中位数、平均得分与方差;

如果仅从执行训练前后统计的各10场比赛得分数据分析,你认为训练计划对该运动员的投篮水平的提高是否有帮助?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方体中,底面是边长为的正方形,对角线相交于点,点在线段上,且与底面所成角为.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设某市2011年新建住房400m2,其中250m2是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50m2,那么到哪一年底,

1)该市历年所建中低价房的累计面积(以2011年为累计的第一年)将首次不少于4750m2

2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%

查看答案和解析>>

同步练习册答案