【题目】已知函数.
(1)当时,求曲线在点处的切线方程;
(2)若,都有成立,求的取值范围;
(3)当时,设,求在区间上的最大值.
科目:高中数学 来源: 题型:
【题目】[选修4―4:坐标系与参数方程]
在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.
(1)若a=1,求C与l的交点坐标;
(2)若C上的点到l的距离的最大值为,求a.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的长轴长为,且离心率为.
(1)求椭圆的标准方程;
(2)设椭圆的左焦点为,点是椭圆与轴负半轴的交点,经过的直线与椭圆交于点,经过且与平行的直线与椭圆交于点,若,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着经济模式的改变,微商和电商已成为当今城乡一种新型的购销平台.已知经销某种商品的电商在任何一个销售季度内,每售出吨该商品可获利润万元,未售出的商品,每吨亏损万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如图所示.已知电商为下一个销售季度筹备了吨该商品.现以(单位:吨,)表示下一个销售季度的市场需求量,(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(1)将表示为的函数,求出该函数表达式;
(2)根据直方图估计利润不少于57万元的概率;
(3)根据频率分布直方图,估计一个销售季度内市场需求量的平均数与中位数的大小(保留到小数点后一位).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),将曲线上各点的横坐标都缩短为原来的倍,纵坐标坐标都伸长为原来的倍,得到曲线,在极坐标系(与直角坐标系取相同的单位长度,且以原点为极点,以轴非负半轴为极轴)中,直线的极坐标方程为.
(1)求直线和曲线的直角坐标方程;
(2)设点是曲线上的一个动点,求它到直线的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标中,圆,圆。
(Ⅰ)在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆的极坐标方程,并求出圆的交点坐标(用极坐标表示);
(Ⅱ)求圆的公共弦的参数方程。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(Ⅰ)求函数的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于的方程在内有两个不同的解.
(1)求实数m的取值范围;
(2)证明:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙二人进行一次象棋比赛,每局胜者得1分,负者得0分(无平局),约定一方得4分时就获得本次比赛的胜利并且比赛结束,设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲得1分,乙得2分.
(1)求甲获得这次比赛胜利的概率;
(2)设表示从第4局开始到比赛结束所进行的局数,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列关于命题的说法错误的是( )
A.命题“若,则”的逆否命题为“若,则”
B.“”是“函数在区间上为增函数”的充分不必要条件
C.“若为的极值点,则”的逆命题为真
D.命题:,的否定是,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com