精英家教网 > 高中数学 > 题目详情
如图,⊙的直径延长线上的一点,过点作⊙的切线,切点为,连接,若               

试题分析:连接,则有,又,则有,从而有,且),所以易求得).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,在Rt△ABC中,, BE平分∠ABC交AC于点E, 点D在AB上,
(1)求证:AC是△BDE的外接圆的切线;
(2)若,求EC的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,设P是圆x2+y2=2上的动点,PD⊥x轴,垂足为D,M为线段PD上一点,且|PD|=
2
|MD|,点A、F1的坐标分别为(0,
2
),(-1,0).
(1)求点M的轨迹方程;
(2)求|MA|+|MF1|的最大值,并求此时点M的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
a
=(x,0)
b
=(1,y)
,且(
a
+
3
b
)⊥(
a
-
3
b
)

(1)求点P(x,y)的轨迹C的方程,且画出轨迹C的草图;
(2)若直线l:y=kx+m(k≠0)与上述曲线C交于不同的两点A、B,求实数k和m所满足的条件;
(3)在(2)的条件下,若另有定点D(0,-1),使|AD|=|BD|,试求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过椭圆
x2
2
+y2=1
的左焦点F1的直线l交椭圆于A、B两点.
(1)求
AO
AF1
的范围;
(2)若
OA
OB
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率e=
2
2
,点F为椭圆的右焦点,点A、B分别为椭圆的左、右顶点,点M为椭圆的上顶点,且满足
MF
FB
=
2
-1

(1)求椭圆C的方程;
(2)是否存在直线l,当直线l交椭圆于P、Q两点时,使点F恰为△PQM的垂心.若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,中,,以为直径的半圆分别交于点,若,则=_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知梯形ABCD的上底AD=8 cm,下底BC=15 cm,在边AB、CD上分别取E、F,使AE∶EB=DF∶FC=3∶2,则EF=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB=AC,延长BC到点D,使得CD=AC,连结AD交⊙O于点E,连结BE.

求证:(1)BE=DE;
(2)∠D=∠ACE.

查看答案和解析>>

同步练习册答案