精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax3+x2(a∈R)在x=﹣ 处取得极值.
(1)确定a的值;
(2)讨论函数g(x)=f(x)ex的单调性.

【答案】
(1)解:对f(x)求导得f′(x)=3ax2+2x.

∵f(x)=ax3+x2(a∈R)在x=﹣ 处取得极值,

∴f′(﹣ )=0,

∴3a +2(﹣ )=0,

∴a=


(2)解:由(1)得g(x)=( x3+x2)ex

∴g′(x)=( x2+2x)ex+( x3+x2)ex= x(x+1)(x+4)ex

令g′(x)=0,解得x=0,x=﹣1或x=﹣4,

当x<﹣4时,g′(x)<0,故g(x)为减函数;

当﹣4<x<﹣1时,g′(x)>0,故g(x)为增函数;

当﹣1<x<0时,g′(x)<0,故g(x)为减函数;

当x>0时,g′(x)>0,故g(x)为增函数;

综上知g(x)在(﹣∞,﹣4)和(﹣1,0)内为减函数,在(﹣4,﹣1)和(0,+∞)为增函数


【解析】(1)求导数,利用f(x)=ax3+x2(a∈R)在x=﹣ 处取得极值,可得f′(﹣ )=0,即可确定a的值;(2)由(1)得g(x)=( x3+x2)ex , 利用导数的正负可得g(x)的单调性.
【考点精析】通过灵活运用利用导数研究函数的单调性和函数的极值与导数,掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】要得到函数y= cosx的图象,只需将函数y= sin(2x+ )的图象上所有的点的(
A.横坐标缩短到原来的 倍(纵坐标不变),再向左平行移动 个单位长度
B.横坐标缩短到原来的 倍(纵坐标不变),再向右平行移动 个单位长度
C.横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动 个单位长度
D.横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动 个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: + =1(a>b>0)的离心率为 ,以原点为圆心,椭圆的短半轴长为半径的圆与直线 x﹣ y+12=0相切.
(1)求椭圆C的方程,
(2)设A(﹣4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别交直线x= 于M,N两点,若直线MR、NR的斜率分别为k1 , k2 , 试问:k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,方程有三个实根,若,则实数( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆C1 (a>b>0)的左焦点为F1(﹣1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,证明:恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数在定义域内存在实数,使得成立,则称函数有“飘移点”

试判断函数及函数是否有“飘移点”并说明理由;

若函数有“飘移点”,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若存在唯一的零点,且,则的取值范围是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱柱的底面边长为3,侧棱DCB延长线上一点,且

求二面角的正切值;

求三棱锥的体积.

查看答案和解析>>

同步练习册答案