【题目】如图,圆台的上、下底面半径分别为5cm,10cm,母线长,从圆台母线的中点拉一条绳子绕圆台侧面转到点.求:
(1)绳子的最短长度;
(2)在绳子最短时,求上底面圆周上的点到绳子的最短距离.
【答案】(1)50cm;(2)4cm
【解析】
(1)根据题意,将圆台展开成平面图形,由两点间距离最短可得绳子即为所求的线段长.由圆台上下底面的半径,结合相似即可求得的长.根据弧长、圆心角、半径关系,可在扇形中求得圆心角.进而由勾股定理求得最短距离的长度.
(2)过点作于点,交于点,则的长度为所求最短距离.利用等面积法可求得,进而求得的长度.
(1)如图,绳子的最短长度为侧面展开图中的长度.
因为圆台的上、下底面半径分别为5cm,10cm
所以,
母线长,代入可得,
所以.
设,由,
解得.
所以.
即绳子的最短长度为50cm.
(2)过点作于点,交于点,则的长度为所求最短距离.
因为,
所以.
故,即上底面圆周上的点到绳子的最短距离为4cm.
科目:高中数学 来源: 题型:
【题目】某小型企业甲产品生产的投入成本x(单位:万元)与产品销售收入y(单位:万元)存在较好的线性关系,下表记录了最近5次该产品的相关数据.
x(万元) | 3 | 5 | 7 | 9 | 11 |
y(万元) | 8 | 10 | 13 | 17 | 22 |
(1)求y关于x的线性回归方程;
(2)根据(1)中的回归方程,判断该企业甲产品投入成本12万元的毛利率更大还是投入成本15万元的毛利率更大(毛利率)?
相关公式:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点.
(1)求证:平面平面;
(2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,.
(1)当时,函数有两个极值点,求的取值范围;
(2)若在点处的切线与轴平行,且函数在时,其图象上每一点处切线的倾斜角均为锐角,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列个结论:
①棱长均相等的棱锥一定不是六棱锥;
②函数既不是奇函数又不是偶函数;
③若函数的值域为,则实数的取值范围是;
④若函数满足条件,则的最小值为.
其中正确的结论的序号是:______. (写出所有正确结论的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高中在校学生2000人为了响应“阳光体育运动”号召,学校举行了跑步和登山比赛活动每人都参加而且只参与了其中一项比赛,各年级参与比赛人数情况如表:
高一年级 | 高二年级 | 高三年级 | |
跑步 | a | b | c |
登山 | x | y | z |
其中a:b::3:5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,现用分层抽样方式从中抽取一个100个人的样本进行调查,则高二年级参与跑步的学生中应抽取
A. 6人B. 12人C. 18人D. 24人
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com