【题目】已知函数的一个零点为-2,当时最大值为0.
(1)求的值;
(2)若对,不等式恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】为推行“微课、翻转课堂”教学法,某数学老师分别用传统教学和“微课、翻转课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:
记成绩不低于70分者为“成绩优良”.
(1)由以上统计数据填写下面列联表,并判断“成绩优良与教学方式是否有关”?
附:
临界值表:
(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高三数学奥林匹克竞赛集训队的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.
(1)求该集训队总人数及分数在[80,90)之间的频数;
(2)计算频率分布直方图中[80,90)的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】正方体的棱长为1,分别是棱,的中点,过直线的平面分别与棱、交于,设,,给出以下四个命题:
①四边形为平行四边形;
②若四边形面积,,则有最小值;
③若四棱锥的体积,,则为常函数;
④若多面体的体积,,则为单调函数.
其中假命题为( )
A.① ③ B.② C.③④ D.④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在锐角△ABC中,两向量p=(2-2sin A,cos A+sin A),q=(sin A-cos A,1+sin A),且p与q是共线向量.
(1)求A的大小;
(2)求函数y=2sin2B+cos()取最大值时,角B的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资商到一开发区投资72万元建起一座蔬菜加工厂,第一年共支出12万元,以后每年支出增加4万元,从第一年起每年的蔬菜销售收入均为50万元,设表示前年的纯利润总和(=前年的总收入前年的总支出投资额).
(1)该厂从第几年开始盈利?
(2)若干年后,投资商为开发新项目,对该厂有两种处理方案:
① 当年平均利润达到最大时,以48万元出售该厂;
② 当纯利润总和达到最大时,以16万元出售该厂,
问哪种方案更合算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形,,侧面是边长为2的等边三角形,点是的中点,且平面平面.
(I)求异面直线与所成角的余弦值;
(II)若点在线段上移动,是否存在点使平面与平面所成的角为?若存在,指出点的位置,否则说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com