精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图象在点处的切线方程为.

1)求函数的解析式;

2)若对任意,不等式恒成立,求正整数t的最大值.

【答案】1;(24.

【解析】

1)首先求出函数的定义域与导函数,然后根据题意及导数的几何意义建立关于mn的方程求解即可;

2)首先将不等式化为,然后构造函数,通过研究新函数的单调性求得其最小值,从而根据恒成立求得正整数t的最大值.

1)函数的定义域为

所以有,解之得

故函数的解析式为:

2可化为

因为,所以

),则由题意知对任意的

再令),则

所以上为增函数,

所以存在唯一的,使得,即

时,,所以上单调递减,

时,,所以上单调递增,

所以

所以

,所以

因为t为正整数,所以t的最大值为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某市教学研究室为了对今后所出试题的难度有更好的把握,提高命题质量,对该市高三理科数学试卷的得分情况进行了调研.从全市参加考试的理科考生中随机抽取了100名考生的数学成绩(满分150分),将数据分成9组:,并整理得到如图所示的频率分布直方图.用统计的方法得到样本标准差,以频率值作为概率估计值.

(Ⅰ)根据频率分布直方图,求抽取的100名理科考生数学成绩的平均分及众数

(Ⅱ)用频率估计概率,从该市所有高三理科考生的数学成绩中随机抽取3个,记理科数学成绩位于区间内的个数为,求的分布列及数学期望

(Ⅲ)从该市高三理科数学考试成绩中任意抽取一份,记其成绩为,依据以下不等式评判(表示对应事件的概率):

,②

,其中

评判规则:若至少满足以上两个不等式,则给予这套试卷好评,否则差评.试问:这套试卷得到好评还是差评?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次篮球投篮测试中,记分规则如下(满分为分):①每人可投篮次,每投中一次记分;②若连续两次投中加分,连续三次投中加分,连续四次投中加分,以此类推,…,七次都投中加.假设某同学每次投中的概率为,各次投篮相互独立,则:(1)该同学在测试中得分的概率为______;(2)该同学在测试中得分的概率为______..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题,是真命题有(

A.,则

B.若复数满足,则

C.给定两个命题.的必要而不充分条件,则的充分不必要条件

D.命题,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生物小组为了研究温度对某种酶的活性的影响进行了一组实验,得到的实验数据经整理得到如下的折线图:

1)由图可以看出,这种酶的活性与温度具有较强的线性相关性,请用相关系数加以说明;

2)求关于的线性回归方程,并预测当温度为时,这种酶的活性指标值.(计算结果精确到0.01

参考数据:.

参考公式:相关系数.

回归直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的底面是边长为2的正三角形,侧棱与下底面相邻的两边AB,AC均成45度的角.

(1)求点到平面B1BCC1的距离.

(2)试问,为多长时,到平面与到平面的距离相等.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知球是正三棱锥(底面为正三角形,顶点在底面的射影为底面中心)的外接球,,点在线段上,且,过点作球的截面,则所得截面圆面积的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知如图1直角三角形ACB中,,点的中点,,将沿折起,使面,如图2.

1)求证:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为

(Ⅰ)设表示一辆车从甲地到乙地遇到红灯的个数,求随机变量的分布列和数学期望;

(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

同步练习册答案