在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
(1)求证:数列{an-n}是等比数列;
(2)求数列{an}的前n项和Sn;
(3)求证:不等式Sn+1≤4Sn对任意n∈N*皆成立.
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第八章第1课时练习卷(解析版) 题型:解答题
如图,四边形ABEF和ABCD都是直角梯形,∠BAD=∠FAB=90°,BC∥=AD,BE∥=FA,G、H分别为FA、FD的中点.
(1)证明:四边形BCHG是平行四边形.
(2)C、D、F、E四点是否共面?为什么?
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第4课时练习卷(解析版) 题型:解答题
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上,且在点Pn(n,Sn)处的切线的斜率为kn.
(1)求数列{an}的通项公式;
(2)若bn=2knan,求数列{bn}的前n项和Tn.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第3课时练习卷(解析版) 题型:解答题
已知数列{an}的首项a1=2a+1(a是常数,且a≠-1),
an=2an-1+n2-4n+2(n≥2),数列{bn}的首项b1=a,
bn=an+n2(n≥2).
(1)证明:{bn}从第2项起是以2为公比的等比数列;
(2)设Sn为数列{bn}的前n项和,且{Sn}是等比数列,求实数a的值;
(3)当a>0时,求数列{an}的最小项.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第3课时练习卷(解析版) 题型:填空题
已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和为________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第3课时练习卷(解析版) 题型:填空题
等比数列{an}中,a1>0,a2a4+2a3a5+a4a6=36,则a3+a5=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第2课时练习卷(解析版) 题型:填空题
设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第五章第1课时练习卷(解析版) 题型:解答题
若数列{an}满足an+1=an+an+2(n∈N*),则称数列{an}为“凸数列”.
(1)设数列{an}为“凸数列”,若a1=1,a2=-2,试写出该数列的前6项,并求出前6项之和;
(2)在“凸数列”{an}中,求证:an+3=-an,n∈N*;
(3)设a1=a,a2=b,若数列{an}为“凸数列”,求数列前2011项和S2011.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学总复习考点引领+技巧点拨第二章第8课时练习卷(解析版) 题型:解答题
设a>0,f(x)=是R上的偶函数.
(1)求a的值;
(2)判断并证明函数f(x)在[0,+∞)上的单调性;
(3)求函数的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com