精英家教网 > 高中数学 > 题目详情

【题目】下面给出了四个类比推理:

为实数,若;类比推出: 为复数,若.

若数列是等差数列, ,则数列也是等差数列类比推出:若数列是各项都为正数的等比数列 则数列也是等比数列.

类比推出:若为三个向量,则.

④ 若圆的半径为,则圆的面积为;类比推出:若椭圆的长半轴长为,短半轴长为,则椭圆的面积为.上述四个推理中,结论正确的是( )

A. ① ② B. ② ③ C. ① ④ D. ② ④

【答案】D

【解析】在复数集C中,若z1,z2∈C,z12+z22=0,则可能z1=1且z2=i.故错误;

在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以类比推出:若数列{cn}是各项都为正数的等比数列,dn=,则数列{dn}也是等比数列.正确;

由若abcR则(abc=abc);类比推出:若为三个向量则.,不正确,因为共线, 共线,当方向不同时,向量的数量积运算结合律不成立;

若圆的半径为a,则圆的面积为πa2;类比推出:若椭圆的长半轴长为a,短半轴长为b,则椭圆的面积为πab.根据圆是椭圆的特殊情形验证可知正确.

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列为公差不为的等差数列, 为前项和, 的等差中项为,且.令数列的前项和为

1)求

2)是否存在正整数成等比数列?若存在,求出所有的的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是首项为19公差为-2的等差数列的前项和

1求通项

2是首项为1公比为3的等比数列求数列的通项公式及其前项和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,已知直线的普通方程为,曲线的参数方程为为参数),设直线与曲线交于 两点.

(Ⅰ)求线段的长;

(Ⅱ)已知点在曲线上运动,当的面积最大时,求点的坐标及的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线轴交于两点.

Ⅰ)若点分别是双曲线的虚轴、实轴的一个端点,试在平面上找两点,使得双曲线上任意一点到这两点距离差的绝对值是定值.

Ⅱ)若以原点为圆心的圆截直线所得弦长是,求圆的方程以及这条弦的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,公差d≠0,其中 ,…, 恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+…+kn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前n项和为,且对任意正整数n,点()在直线上.

(1)求数列的通项公式;

(2)是否存在实数λ,使得数列{ }为等差数列?若存在,求出λ的值;若不存在,请说明理由;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中, . ,且平面 ,点上任意一点.

(1)求证:

(2)点在线段上运动(包括两端点),若平面与平面所成的锐二面角为60°,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知锐角△ABC的面积等于3 ,且AB=3,AC=4.
(1)求sin( +A)的值;
(2)求cos(A﹣B)的值.

查看答案和解析>>

同步练习册答案