精英家教网 > 高中数学 > 题目详情

【题目】ABC的内角ABC的对边分别为abc,已知△ABC的面积为.

1)求sinBsinC

2)若3cosBsin2A+sin2Bsin2C)=sinAsinBa6,求b+c的值.

【答案】(1)(2)

【解析】

1)利用面积公式,结合正弦定理将边化角,即可整理化简求得结果;

2)利用余弦定理,结合已知条件,求得,再结合(1)中所求,求得角;然后用余弦定理和,求得的结果.

1)由三角形的面积公式可得

SABCacsinB

3csinBsinB2b

由正弦定理可得:3sinCsinBsinB2sinB

sinB≠0

sinBsinC

2)∵3cosBsin2A+sin2Bsin2C)=sinAsinB

∴由正弦定理可得:3cosBa2+b2c2)=ab

可得:3cosB2abcosCab

cosBcosC

cosB+C)=cosBcosCsinBsinC

B+C,可得A

a6

36b2+c2bc=(b+c2﹣3bc,即:(b+c236+3bc

又∵,可得:b4sinBc4sinC

bc48sinBsinC4832

36+3bc36+96132

解得:b+c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】己知椭圆的离心率为分别是椭圈的左、右焦点,椭圆的焦点到双曲线渐近线的距离为.

(1)求椭圆的方程;

(2)直线与椭圆交于两点,以线段为直径的圆经过点,且原点到直线的距离为,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角极坐标系中,直线的参数方程为其中为参数,其中的倾斜角,且其中,以坐标原点为极点,轴的正半轴为极轴建立平面直角坐标系,曲线C1的极坐标方程,曲线C2的极坐标方程.

(1)C1C2的直角坐标方程;

(2)已知点P(-2,0)C1交于点,与C2交于AB两点,且,求的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知曲线和曲线,以极点为坐标原点,极轴为轴非负半轴建立平面直角坐标系.

(1)求曲线和曲线的直角坐标方程;

(2)若点是曲线上一动点,过点作线段的垂线交曲线于点,求线段长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为降低养殖户养鸭风险,某保险公司推出了鸭意外死亡保险,该保单合同规定每只幼鸭投保2元,若生长期内鸭意外死亡,则公司每只鸭赔付12.假设鸭在生长期内的意外死亡率为0.15,且每只鸭是否死亡相互独立.若某养殖户养鸭3000只,都投保该险种.

1)求该保单保险公司赔付金额等于保费时,鸭死亡的只数;

2)求该保单保险公司平均获利多少元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图几何体是圆锥的一部分,它是RtABC(及其内部)以一条直角边AB所在直线为旋转轴旋转150°得到的,ABBC2P是弧上一点,且EBAP.

1)求∠CBP的大小;

2)若QAE的中点,D为弧的中点,求二面角QBDP的余弦值;

3)直线AC上是否存在一点M,使得BDMQ四点共面?若存在,请说明点M的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我校开展的高二学工学农某天的活动安排中,有采茶,摘樱桃,摘草莓,锄草,栽树,喂奶牛共六项活动可供选择,每个班上午,下午各安排一项(不重复),且同一时间内每项活动都只允许一个班参加,则该天甲,乙两个班的活动安排方案的种数为:________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)记,试判断函数的极值点的情况;

(Ⅱ)若有且仅有两个整数解,求实数的取值范围.

查看答案和解析>>

同步练习册答案