精英家教网 > 高中数学 > 题目详情

【题目】2018届宁夏育才中学高三上学期期末】某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示),由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的.

1)根据频率分布直方图计算图中各小长方形的宽度;

2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);

3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:

由表中的数据显示, 之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程.

参考公式:

【答案】(1)2(2)5(3)答案见解析.

【解析】试题分析:

1设各小长方形的宽度为.由频率分布直方图中各小长方形的面积总和为得到关于m的方程,解方程可得,即图中各小长方形的宽度为.

2以各组的区间中点值代表该组的取值,结合(1)中求得的结论可估计平均值为 .

3)由(2)可知空白栏中填.据此计算可得 结合回归方程计算公式可得 ,则所求的回归直线方程为.

试题解析:

1设各小长方形的宽度为.

由频率分布直方图中各小长方形的面积总和为,可知

,解得.

故图中各小长方形的宽度为.

2)由(1)知各小组依次是 ,其中点分别为 对应的频率分别为

故可估计平均值为 .

3)由(2)可知空白栏中填.

由题意可知

根据公式,可求得

.

所以所求的回归直线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为左、右焦点分别为的直线交椭圆于两点.

(1)若以为直径的动圆内切于圆求椭圆的长轴长;

(2)当时,问在轴上是否存在定点使得为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C过点,与y轴相切,且圆心在直线.

(1)求圆C的标准方程;

(2)若圆C半径小于2,求经过点且与圆C相切的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的奇函数,且当时,.

1)求函数的解析式;

2)当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实常数,函数.

(1)求函数的最值;

(2)设.

(i)讨论函数的单调性;

(ⅱ) 若函数有两个不同的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 平面 平面 是等边三角形,

的中点.

(1)求证:

(2)若直线与平面所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图动点P从单位正方形ABCD顶点A开始顺次经B、C、D绕边界一周,当 表示点P的行程, 表示PA之长时,求y关于x的解析式,并求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,两条曲线交于两点.

(1) 求直线与曲线交点的极坐标;

(2) 已知为曲线 (为参数)上的一动点,设直线与曲线的交点为,求的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆,圆.

(1)若过点的直线被圆截得的弦长为,求直线的方程;

(2)设动圆同时平分圆的周长、圆的周长.

①证明:动圆圆心在一条定直线上运动;

②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

同步练习册答案