精英家教网 > 高中数学 > 题目详情
函数f(x)=-x3+15x2+33x+6的单调减区间为
 
考点:利用导数研究函数的单调性
专题:计算题,导数的综合应用,不等式的解法及应用
分析:要求函数的单调减区间可先求出f′(x),并令其小于零得到关于x的不等式求出解集即可.
解答: 解:f′(x)=-3x2+30x+33=-3(x2-10x-11)=-3(x+1)(x-11)<0,
解得x>11或x<-1,
故减区间为(-∞,-1)和(11,+∞).
故答案为:(-∞,-1)和(11,+∞).
点评:此题考查学生利用导数研究函数的单调性的能力,同时考查解不等式的运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2
2
,∠BDC=60°.
(1)求异面直线AB与CD所成角大小的余弦值.
(2)截面EFGH∥AB,截面EFGH∥CD,求证:截面EFGH为平行四边形.
(3)在(2)条件下,求截面EFGH面积的最大值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-ax(a≠0),g(x)=lnx,f(x)图象与x轴异于原点的交点M处的切线为l1,g(x-1)与x轴的交点N处的切线为l2,并且l1与l2平行.
(1)求f(2)的值;
(2)已知实数t∈R,求函数y=f[xg(x)+t],x∈[1,e]的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax2,曲线y=f(x)在点(1,f(1))处的切线在x轴上的截距为
1
2-e

(1)求实数a的值;
(2)设g(x)=f(2x)-f(x),求证:g(x)在R上单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆的两焦点坐标分别为F1(-
3
,0),F2
3
,0),且椭圆过点P(1,-
3
2
).
(1)求椭圆方程;
(2)若 A为椭圆的左顶点,作AM⊥AN与椭圆交于两点M、N,试问:直线MN是否恒过x轴上的一个定点?若是,求出该点坐标;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-lnx,若f(x)存在两个零点,则实数a的取值范围是(  )
A、(0,
1
2e
B、(0,1)
C、(-∞,
1
2e
D、(-∞,-1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x,y取值如下表:
x014568
y1.31.85.66.17.49.3
从所得散点图中分析可知:y与x线性相关,且
y
=0.95x+a,则x=13时,y=(  )
A、1.45B、13.8
C、13D、12.8

查看答案和解析>>

科目:高中数学 来源: 题型:

若关于x的不等式2-x2=|x-a|至少有一个负数解,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0,b>0,a+b=1,则(a+
1
a
)(b+
1
b
)
的最小值是
 

查看答案和解析>>

同步练习册答案