精英家教网 > 高中数学 > 题目详情

已知定点A(-2,0),B(2,0),及定点F(1,0),定直线l:x=4,不在x轴上的动点M到定点F的距离是它到定直线l的距离的数学公式倍,设点M的轨迹为E,点C是轨迹E上的任一点,直线AC与BC分别交直线l与点P,Q.
(1)求点M的轨迹E的方程;
(2)试判断以线段PQ为直径的圆是否经过定点F,并说明理由.

解:(1)由椭圆的第二定义可知:
点M的轨迹E是以定点F(1,0)为焦点,离心率e=,直线l:x=4为准线的椭圆(除去与x轴相交的两点).
∴c=1,,∴a=2,b2=22-12=3,
∴点M的轨迹为椭圆E,其方程为(除去(±2,0)).
(2)以线段PQ为直径的圆经过定点F.下面给出证明:
如图所示:设C(x0,y0),(x0≠±2),则直线AC的方程为:
令x=4,则yP=,∴,∴=
直线BC的方程为:,令x=4,则yQ=,∴,∴kQF==
∴kPF•kQF==
∵点C(x0,y0)在椭圆上,∴,∴=-1,
∴kPF•kQF=-1.
因此以线段PQ为直径的圆经过定点F.
分析:(1)由椭圆的第二定义即可知道点M的轨迹E为椭圆;
(2)设出椭圆上的点C的坐标,进而写出直线AC、BC的方程,分别求出点P、Q的坐标,只要判断kPF•kQF=-1是否成立即可.
点评:熟练掌握椭圆的定义、直线垂直与斜率的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定点A(-2,0),动点B是圆F:(x-2)2+y2=64(F为圆心)上一点,线段AB的垂直平分线交BF于P;
(1)求动点P的轨迹E的方程;
(2)直线y=
3
x+1与曲线E交于M,N两点,试问在曲线E位于第二象限部分上是否存在一点C,使
OM
+
ON
OC
共线(O为坐标原点)?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知定点A(2,0),点Q是圆x2+y2=1上的动点,∠AOQ的平分线交AQ于M,当Q点在圆上移动时,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知定点A(2,0)及抛物线y2=x,点B在该抛物线上,若动点P使得
AP
+2
BP
=
0
,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
1
4
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II )过定点T(-1,0)的动直线l与曲线C交于P,Q两点,是否存在定点S(s,0),使得
SP
SQ
为定值,若存在求出s的值;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•石家庄一模)在平面直角坐标系xOy中,已知定点A(-2,0)、B(2,0),M是动点,且直线MA与直线MB的斜率之积为-
1
4
,设动点M的轨迹为曲线C.
(I)求曲线C的方程;
(II)过定点T(-1,0)的动直线l与曲线C交于P,Q两点,若S(-
17
8
,0),证明:
SP
SQ
为定值.

查看答案和解析>>

同步练习册答案