精英家教网 > 高中数学 > 题目详情
1.甲、乙、丙、丁4人任意排成一行,求甲和乙相邻的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

分析 甲、乙、丙、丁4人任意排成一行,先求出基本事件总数,再求出甲和乙相邻包含的基本事件个数,由此能求出甲和乙相邻的概率.

解答 解:甲、乙、丙、丁4人任意排成一行,
基本事件总数n=${A}_{4}^{4}$=24,
甲和乙相邻包含的基本事件个数m=${A}_{3}^{3}{A}_{2}^{2}$=12,
∴甲和乙相邻的概率p=$\frac{m}{n}$=$\frac{12}{24}$=$\frac{1}{2}$.
故选:D.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.几何体的三视图如右图所示,则该几何体的体积为9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1,x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)在区间[-$\frac{π}{4},\frac{π}{3}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0且a≠1).
(1)求f(x)的单调区间.
(2)试确定f(x)的奇偶性和周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=ln(2x)+2x-a(a∈R).若存在b∈[1,e](e是自然对数的底数),使f(f(b))=b成立,则a的取值范围是(  )
A.[1,e+1]B.[ln2+1,e+ln2+1]C.[e,e+1]D.[ln2,e+ln2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(2,3),若$\overrightarrow{a}$+$\overrightarrow{c}$=2$\overrightarrow{b}$,O是坐标原点.
(1)求$\overrightarrow{c}$;
(2)若$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,求点A,B的坐标;
(3)在(2)的条件下,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求以坐标轴为对称轴,一条渐进线方程为x+3y=0,并且过点(3,2)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案