精英家教网 > 高中数学 > 题目详情
已知,圆,一动圆在轴右侧与轴相切,同时与圆相外切,此动圆的圆心轨迹为曲线C,曲线E是以为焦点的椭圆。
(1)求曲线C的方程;
(2)设曲线C与曲线E相交于第一象限点P,且,求曲线E的标准方程;
(3)在(1)、(2)的条件下,直线与椭圆E相交于A,B两点,若AB的中点M在曲线C上,求直线的斜率的取值范围。
(1);(2)

试题分析:(1)设动圆圆心的坐标为(x,y)(x>0),由动圆在y轴右侧与y轴相切,同时与圆F2相外切,知|CF2|-x=1,由此能求出曲线C的方程.
(2)依题意,c=1,|PF1|=,得xp=,由此能求出曲线E的标准方程.
(3)设直线l与椭圆E交点A(x1,y1),B(x2,y2),A,B的中点M的坐标为(x0,y0),将A,B的坐标代入椭圆方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能够求出直线l的斜率k的取值范围
解:(1)设动圆圆心的坐标为(x,y)(x>0)
因为动圆在y轴右侧与y轴相切,同时与圆F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化简整理得y2=4x,曲线C的方程为y2=4x(x>0); …(3分)(2)依题意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由椭圆定义得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲线E的标准方程为
=1.…(6分)(3)设直线l与椭圆E交点A(x1,y1),B(x2,y2),A,B的中点M的坐标为(x0,y0),将A,B的坐标代入椭圆方程中,得3x12+4y12-12=0,3x22+4y22-12=0两式相减得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直线AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp由题设-<y0 (y0≠0),∴-<-y0,…(10分)即-<k<(k≠0).…(12分)
点评:本题考查曲线方程的求法,考查直线的斜率的取值范围的求法,解题时要认真审题,注意点差法和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知分别是椭圆的左右焦点,过轴垂直的直线交椭圆于两点,若是锐角三角形,则椭圆离心率的范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系xOy中,直线l的方程为x-y+4=0,曲线C的参数方程为 
(Ⅰ)已知在极坐标(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,点P的极坐标为,判断点P与直线l的位置关系;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最值;
(Ⅲ)请问是否存在直线 ,∥l且与曲线C的交点A、B满足
若存在请求出满足题意的所有直线方程,若不存在请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线和点为抛物线上的点,则满足的点有( )个。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,已知曲线的极坐标方程为
(1)求的直角坐标方程;
(2)直线为参数)与曲线C交于两点,与轴交于,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的终边经过点A,且点A在抛物线的准线上,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,点为该抛物线上的动点,又点的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上顶点为,左焦点为,直线与圆相切.过点的直线与椭圆交于两点.
(I)求椭圆的方程;
(II)当的面积达到最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆(为参数)的离心率是        .

查看答案和解析>>

同步练习册答案