精英家教网 > 高中数学 > 题目详情

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

【答案】B

【解析】

由试验结果知12001之间的均匀随机数,满足,面积为1,两个数能与1构成钝角三角形三边的数对,满足 ,面积为,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值.

由题意,120名同学随机写下的实数对落在由的正方形内,其面积为1

两个数能与1构成钝角三角形应满足

此为一弓形区域,其面积为.由题意,解得,故选B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校研究性学习小组对该校高二学生视力情况进行调查,学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在150名和9511000名的学生进行了调查,得到如下数据:

年级名次

是否近视

150

9511000

近视

41

32

不近视

9

18

1)根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?

2)在(1)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在150名的学生人数为,求的分布列和数学期望.

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,且上无最小值,则______,函数的单调减区间为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分) 已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点

1)求椭圆的方程;

2)求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数处的切线方程为,函数.

(1)求函数的解析式;

(2)求函数的极值;

(3)设表示中的最小值),若上恰有三个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种大型医疗检查机器生产商,对一次性购买2台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000元,在延保的两年内可免费维修2次,超过2次每次收取维修费2000元;方案二:交纳延保金10000元,在延保的两年内可免费维修4次,超过4次每次收取维修费1000元.某医院准备一次性购买2台这种机器。现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:

维修次数

0

1

2

3

台数

5

10

20

15

以这50台机器维修次数的频率代替1台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数。

(1)求X的分布列;

(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的取值范围是.

(1)求的值;

(2)若不等式恒成立,求实数的取值范围;

(3)若函数有3个零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求下列椭圆的标准方程:

1)已知椭圆长轴是短轴的倍,并且过点

2)已知椭圆经过两点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABCA1B1C1中,AA1AC,且ABACDE分别为是A1C1BB1的中点.

1)求证:A1C⊥平面ABC1

2)求证:DE平面ABC1

查看答案和解析>>

同步练习册答案