精英家教网 > 高中数学 > 题目详情
设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是______.
设弦PQ的中点为M,过点P、M、Q分别作准线l的垂线,垂足为P'、M'、Q'
则|MM'|=
1
2
(|PP'|+|QQ'|)=
1
2e
(|PF|+|QF|)=
1
2e
|PQ|
假设存在点R,使△PQR为正三角形,则由|RM|=
3
2
|PQ|,且|MM'|<|RM|
得:
1
2e
|PQ|<
3
2
|PQ|
1
2e
3
2

∴e>
3
3

∴椭圆离心率e的取值范围是(
3
3
,1)

故答案为:(
3
3
,1)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的准线方程为(  )
A、y=±
a2
c
B、y=±
b2
c
C、x=±
a2
c
D、x=±
b2
c

查看答案和解析>>

科目:高中数学 来源: 题型:

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是
(
3
3
,1)
(
3
3
,1)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,令c2=a2-b2,那么它的准线方程为(  )
A.y=±
a2
c
B.y=±
b2
c
C.x=±
a2
c
D.x=±
b2
c

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设椭圆方程为
x2
a2
+
y2
b2
=1 (a>b>0)
,PQ是过左焦点F且与x轴不垂直的弦,若在左准线l上存在点R,使△PQR为正三角形,则椭圆离心率e的取值范围是______.

查看答案和解析>>

同步练习册答案