精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: 的上下焦点分别为F1 , F2 , 离心率为 ,P为C上动点,且满足 |,△QF1F2面积的最大值为4. (Ⅰ)求Q点轨迹E的方程和椭圆C的方程;
(Ⅱ)直线y=kx+m(m>0)与椭圆C相切且与曲线E交于M,N两点,求 的取值范围.

【答案】解:(Ⅰ)由椭圆定义得:|F2Q|=|F2P|+|PQ|=|F2P|+|PF1|=2a, 所以点Q的轨迹是以F2为圆心,2a为半径的圆.
当QF2⊥F1F2时△QF1F2面积最大,所以 得:ac=2
可得a=2,c=1.
所以Q点轨迹E的方程x2+(y+1)2=16,椭圆C的方程
(Ⅱ)由 得(3k2+4)x2+6kmx+3m2﹣12=0△=36k2m2﹣4(3k2+4)(3m2﹣12)=0
化简得:3k2﹣m2+4=0
所以,
及m>0得,m≥2
设圆心F2(0,﹣1)到直线MN的距离为d,则
所以,弦长
设点F1(0,1)到直线MN的距离为h,则
所以,
由m≥2,得:
所以, 的取值范围为
【解析】(Ⅰ)由椭圆定义得:|F2Q|=|F2P|+|PQ|=|F2P|+|PF1|=2a,点Q的轨迹是以F2为圆心,2a为半径的圆,当QF2⊥F1F2时△QF1F2面积最大,推出ac=2,结合离心率,然后求解椭圆方程即可.(Ⅱ)联立 通过△=0,推出 求出m≥2,设圆心F2(0,﹣1)到直线MN的距离为d,求出弦长,设点F1(0,1)到直线MN的距离为h,求出三角形的面积的表达式,然后求解范围即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数满足

(Ⅰ)当时,解不等式

(Ⅱ)若关于x的方程的解集中有且只有一个元素,求a的值;

(Ⅲ)设,若对,函数在区间上的最大值与最小值的差不超过1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面几何中,通常将完全覆盖某平面图形且直径最小的圆,称为该平面图形的最小覆盖圆.最小覆盖圆满足以下性质:①线段的最小覆盖圆就是以为直径的圆;②锐角的最小覆盖圆就是其外接圆.已知曲线为曲线上不同的四点.

(Ⅰ)求实数的值及的最小覆盖圆的方程;

(Ⅱ)求四边形的最小覆盖圆的方程;

(Ⅲ)求曲线的最小覆盖圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四面体中,平面平面分别为的中点.

(1)证明:平面平面

(2)求三棱锥的体积;

(3)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办“中国诗词大赛”活动,某班派出甲乙两名选手同时参加比赛.大赛设有15个诗词填空题,其中“唐诗”、“宋词”和“毛泽东诗词”各5个.每位选手从三类诗词中各任选1个进行作答,3个全答对选手得3分,答对2个选手得2分,答对1个选手得1分,一个都没答对选手得0分.已知“唐诗”、“宋词”和“毛泽东诗词”中甲能答对的题目个数依次为5,4,3,乙能答对的题目个数依此为4,5,4,假设每人各题答对与否互不影响,甲乙两人答对与否也互不影响. 求:
(Ⅰ)甲乙两人同时得到3分的概率;
(Ⅱ)甲乙两人得分之和ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四面体ABCD中,若AB=CD= ,AC=BD=2,AD=BC= ,则直线AB与CD所成角的余弦值为(
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数)与的图象上存在关于轴对称的点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,侧面为菱形,的中点为,且平面

(1)证明:

(2)若,试画出二面角的平面角,并求它的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,解不等式

(Ⅱ)设是函数的四个不同的零点,问是否存在实数,使得其中三个零点成等差数列?若存在,求出所有的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案