精英家教网 > 高中数学 > 题目详情
13.在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$
(Ⅰ)求△ABM与△ABC的面积之比
(Ⅱ)若N为AB中点,$\overrightarrow{AM}$与$\overrightarrow{CN}$交于点P且$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),求x+y的值.

分析 (Ⅰ)由$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$⇒3$\overrightarrow{BM}=\overrightarrow{MC}$,即点M在线段BC上的靠近B的四等分点即可,
(Ⅱ)$\overrightarrow{AP}∥\overrightarrow{AM}$设$\overrightarrow{AP}$=$λ\overrightarrow{AM}$=$\frac{3λ}{4}\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}=\frac{3λ}{2}\overrightarrow{AN}+\frac{λ}{4}\overrightarrow{AC}$;$\frac{3λ}{2}+\frac{λ}{4}=1,解得λ=\frac{4}{7}$.

解答 解:(Ⅰ)在△ABC中,$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$⇒$4\overrightarrow{AM}-3\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{0}$⇒3$(\overrightarrow{AM}-\overrightarrow{AB})=\overrightarrow{AC}-\overrightarrow{AM}$
⇒3$\overrightarrow{BM}=\overrightarrow{MC}$,即点M在线段BC上的靠近B的四等分点,
∴△ABM与△ABC的面积之比为$\frac{1}{4}$.
(Ⅱ)∵$\overrightarrow{AM}$=$\frac{3}{4}$$\overrightarrow{AB}$+$\frac{1}{4}$$\overrightarrow{AC}$,$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AC}$(x,y∈R),$\overrightarrow{AP}∥\overrightarrow{AM}$,
∴设$\overrightarrow{AP}$=$λ\overrightarrow{AM}$=$\frac{3λ}{4}\overrightarrow{AB}+\frac{λ}{4}\overrightarrow{AC}=\frac{3λ}{2}\overrightarrow{AN}+\frac{λ}{4}\overrightarrow{AC}$;
∵三点N、P、C共线,∴$\frac{3λ}{2}+\frac{λ}{4}=1,解得λ=\frac{4}{7}$,$x=\frac{3λ}{4}=\frac{3}{7},y=\frac{1}{4}λ=\frac{1}{7}$,
x+y=$\frac{4}{7}$.

点评 本题考查了向量的线性运算,利用三点共线,系数和为1,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.给出下列说法,其中正确的个数是(  )
①命题“?x∈R,x2+x+1>0”的否定是:“?x0∈R,x02+x0+1≤0”;
②命题“若x=y,则sinx=siny”的否命题是:“若x=y,则sinx≠siny”;
③“7<k<9”是“方程$\frac{{x}^{2}}{k-4}$+$\frac{{y}^{2}}{10-k}$=1表示焦点在x轴上的椭圆”的充分不必要条件;
④“m=2”是“l1:2x+(m+1)y+4=0与l2:mx+3y-2=0平行”的充要条件.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个棱锥的三视图,则此棱锥的体积为$\frac{8}{3}$,表面积为4$\sqrt{2}$+6+2$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),且满足$\sqrt{3}$cos2$\frac{α}{2}$+$\sqrt{2}$sin2$\frac{β}{2}$=$\frac{{\sqrt{2}}}{2}+\frac{{\sqrt{3}}}{2}$,sin(2017π-α)=$\sqrt{2}$cos($\frac{5π}{2}$-β),则α+β=$\frac{5π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\root{3}{(lg50-1)^{3}}$-$\sqrt{(lg2-1)^{2}}$=(  )
A.2lg5B.0C.-1D.-2lg5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知定义在R上的函数f(x)=$\frac{b-{4}^{x}}{a+{4}^{x}}$是奇函数.
(1)求a,b的值;
(2)判断其单调性并加以证明;
(3)若对任意的t∈[-1,3],不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.等差数列{an}满足a1=3,a1+a2+…+a10=120,数列{bn}的前n项和为Sn,且Sn=2bn-1(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)求数列{anbn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在新年联欢晚会上,游戏获胜者甲和乙各有一次抽奖机会,共有4个奖品,其中一等奖2个,二等奖2个,甲、乙二人依次各抽一次.
(Ⅰ)求甲抽到一等奖,乙抽到二等奖的概率;
(Ⅱ)求甲、乙二人中至少有一人抽到一等奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系中,已知角α的终边经过点P(-3,4)
(1)求sinα和cosα的值;
(2)求$tan(α+\frac{π}{4})$的值;
(3)求${sin^2}(α+\frac{π}{4})+sin(α+\frac{π}{4})•cos(α+\frac{π}{4})$的值.

查看答案和解析>>

同步练习册答案