精英家教网 > 高中数学 > 题目详情
7.设全集U=R,A={x∈R|a≤x≤3a-1},B={x∈R|3x2-8x+4≤0}.
(1)若a=1,求(∁UA)∩B;
(2)若A⊆B,求实数a的取值范围.

分析 (1)若a=1,求出集合A,B,利用集合的基本运算即可求(∁UA)∩B;
(2)若A⊆B,根据集合的基本关系,即可求出实数a的取值范围.

解答 解:(1)若a=1,则A={x|1≤x≤2},B={x|$\frac{2}{3}$≤x≤2},
由∁UA={x|x<1,或x>2},
∴(∁UA)∩B={x|x<1,或x>2}∩{x|$\frac{2}{3}$≤x≤2}={x|$\frac{2}{3}$≤x<1};
(2)∵A={x∈R|a≤x≤3a-1},A⊆B,
∴①a>3a-1,即a<$\frac{1}{2}$,A=∅成立;  
②a≤3a-1,即a≥$\frac{1}{2}$时,A=(a,3a-1)⊆($\frac{2}{3}$,2),
∴$\left\{\begin{array}{l}{3a-1≤2}\\{a≥\frac{2}{3}}\end{array}\right.$,
解得$\frac{2}{3}$≤a≤1,
综上实数a的取值范围为:(-∞,$\frac{1}{2}$)∪[$\frac{2}{3}$,1].

点评 本题主要考查集合的基本运算,求出集合的等价条件是解决本题的关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知:集合A={a,b,c},B={0,1,2},在映射f:A→B中,满足f(a)>f(b)的映射有(  )个.
A.27B.9C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x(ex+ae-x)(x∈R),若函数f(x)是偶函数,记a=m,若函数f(x)为奇函数,记a=n,则m+2n的值为(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在平面四边形ABCD中,∠A=∠B=60°,∠C=75°,BC=2,则AB的取值范围是(2,1+$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.点A、B、C、D在同一个球的球面上,${A}{B}={B}C=\sqrt{2}$,AC=2,若四面体ABCD体积的最大值为$\frac{2}{3}$,则这个球的表面积为(  )
A.B.$\frac{25π}{4}$C.$\frac{25π}{16}$D.$\frac{125π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A、B、C为函数y=logax(0<a<1)的图象上的三点,它们的横坐标分别是t,t+2,t+4(t>1).
(1)设△ABC的面积为S,求S=f(t);
(2)求函数S=f(t)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知二次函数f(x)=ax2+bx+c(a>0)
(1)若c>0,f(x)图象与x轴有两个不同的公共点,且f(c)=0,并且但0<x<c时,f(x)>0试比较$\frac{1}{a}$与c的大小,并说明理由
(2)若x∈[-2,-1]且函数f(x)在x=-1处取得最大值0,求$\frac{{b}^{2}-2ac}{ab-{a}^{2}}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆C:(x-3)2+(y-4)2=1和两点A(1-m,0),B(1+m,0),m>0,若圆C上存在点P,使得∠APB=90°,则m的最大值为2$\sqrt{5}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}的前n项和记为Sn,且满足Sn=2an-n(n∈N*).
(1)求a1,a2的值,并证明:数列{an+1}是等比数列;
(2)证明:$\frac{n}{2}-\frac{1}{3}<\frac{a_1}{a_2}+\frac{a_2}{a_3}+…+\frac{a_n}{{{a_{n+1}}}}<\frac{n}{2}$.

查看答案和解析>>

同步练习册答案