精英家教网 > 高中数学 > 题目详情

【题目】中,已知

(1)求证:

(2)若A的值.

【答案】(1)见解析;(2)

【解析】试题分析:(1)已知的向量的数量积,要证明的是角的关系,故我们首先运用数量积定义把已知转化为三角形的边角关系,由已知可得,即,考虑到求证式只是角的关系,因此我们再应用正弦定理把式子中边的关系转化为角的关系,即有,而这时两边同除以即得待证式(要说明均不为零).2)要求解的大小,一般是求出这个角的某个三角函数值,本题应该求,因为(1)中有可利用,思路是.

试题解析:(1)∵,∴,

. 2

由正弦定理,,∴. 4

,∴.∴. 6

(2)∵,∴.∴.8

,.∴. 10

(1) ,,解得. 12

,∴.∴. 14

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R.若直线l:ax+y﹣7=0在矩阵A= 对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 都是从0,1,2,3,4五个数中任取的一个数,求上述函数有零点的概率;

(2)若 都是从区间上任取的一个数,求成立的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数

(1)若,求不等式的解集;

(2)若对任意,均存在,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有穷数列中的每一项都是-1,0,1这三个数中的某一个数,,且,则有穷数列中值为0的项数是(

A. 1000B. 1010C. 1015D. 1030

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在上海自贸区的利好刺激下,公司开拓国际市场,基本形成了市场规模;自2014年1月以来的第个月(2014年1月为第一个月)产品的内销量、出口量和销售总量(销售总量=内销量+出口量)分别为(单位:万件),依据销售统计数据发现形成如下营销趋势:(其中为常数,),已知万件,万件,万件.

(1)求的值,并写出满足的关系式;

(2)证明:逐月递增且控制在2万件内;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的正方体中,OAC的中点,E是线段D1O上一点,且D1E=λEO.

(1)若λ=1,求异面直线DECD1所成角的余弦值;

(2)若平面CDE平面CD1Oλ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个路灯的平面设计示意图,其中曲线段AOB可视为抛物线的一部分,坐标原点O为抛物线的顶点,抛物线的对称轴为y轴,灯杆BC可视为线段,其所在直线与曲线AOB所在的抛物线相切于点B.已知AB=2分米,直线轴,点C到直线AB的距离为8分米.灯杆BC部分的造价为10/分米;若顶点O到直线AB的距离为t分米,则曲线段AOB部分的造价为. 设直线BC的倾斜角为以上两部分的总造价为S.

(1)①求t关于的函数关系式;

②求S关于的函数关系式;

(2)求总造价S的最小值.

查看答案和解析>>

同步练习册答案