精英家教网 > 高中数学 > 题目详情

【题目】如图,下列4个正方体中,点分别为正方体的顶点或所在棱的中点,则在这4个正方体中,满足直线平面的个数为(

A.1B.2C.3D.4

【答案】B

【解析】

对于图1,正方体的体对角线垂直于每一个面上与其不相交的面对角线,所以在此图中有平面.

对于图2,由正方体的性质和三角形中位线定理可得平面.

对于图3和图4 中,均能在平面中找到一条与不垂直的线,所以与平面不垂直从而可得结论.

解:对于图1,如图,连接.因为平面,所以平面,从而.同理可得.因为平面,所以平面.

对于图2,因为平面,所以平面.

对于图3,因为不垂直,所以与平面不垂直.

对于图4,因为不垂直,所以与平面不垂直.故满足直线平面的个数为2.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在固定压力差(压力差为常数)下,当气体通过圆形管道时,其流量速率,(单位:)与管道半径r(单位:cm)的四次方成正比.

1)写出气体流量速率,关于管道半径r的函数解析式;

2)若气体在半径为3cm的管道中,流量速率为,求该气体通过半径为r的管道时,其流量速率v的表达式;

3)已知(2)中的气体通过的管道半径为5cm,计算该气体的流量速率(精确到.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴为半径的圆与直线相切,过点且不垂直于轴直线与椭圆相交于两点。

1)求椭圆的方程;

2)若点关于轴的对称点是点,证明:直线轴相交于定点。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,底面是边长为2的正方形,,且中点.

)求证:平面  

求二面角的大小

在线段上是否存在点,使得点到平

的距离为?若存在,确定点的位置;

若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当自变量x在什么范围取值时,下列函数的值等于0?大于0?小于0?

(1);

(2);

(3);

(4).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】根据某镇家庭抽样调查的统计,2003年每户家庭平均消费支出总额为1万元,其中食品消费额为0.6万元.预测2003年后,每户家庭平均消费支出总额每年增加3000元,如果到2005年该镇居民生活状况能达到小康水平(即恩格尔系数n满足),则这个镇每户食品消费额平均每年的增长率至多是多少(精确到0.1%)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,m∈R.

(1)若m=3,求A∩B;

(2)已知命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥中,平面,底面边长,则正三棱锥的外接球的表面积为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题:对,不等式恒成立;命题,使得成立.

(1)若为真命题,求的取值范围;

(2)当时,若假,为真,求的取值范围.

查看答案和解析>>

同步练习册答案