精英家教网 > 高中数学 > 题目详情
已知数列{an}是公差不为零的等差数列,a10=15,且a3、a4、a7成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
an
2n
,数列{bn}的前n项和为Tn,求证:-
7
4
Tn<-1(n∈N*)
分析:(Ⅰ)利用待定系数法,根据a10=15,且a3、a4、a7成等比数列,建立方程组,可求首项与公差,从而可得数列{an}的通项公式;
(Ⅱ)先利用错位相减法求出数列{bn}的前n项和为Tn,再确定其单调性,即可证得结论.
解答:(Ⅰ)解:设数列{an}的公差为d(d≠0),由已知得:
a10=15
a42=a3a7

即:
a1+9d=15
(a1+3d)2=(a1+2d)(a1+6d)
------(2分)
解之得:
a1=-3
d=2
---------------------(4分)
所以an=2n-5,(n≥1)-------------------------(6分)
(Ⅱ)证明:∵bn=
an
2n
=
2n-5
2n
,n≥1

Tn=
-3
2
+
-1
22
+
1
23
+…+
2n-5
2n
,①
1
2
Tn=
-3
22
+
-1
23
+
1
24
+…+
2n-7
2n
+
2n-5
2n+1
.②
①-②得:
1
2
Tn=
-3
2
+2(
1
22
+
1
23
+…+
1
2n
)-
2n-5
2n+1
=-
1
2
+
1-2n
2n+1

Tn=-1-
2n-1
2n
(n≥1)
,----------(10分)
2n-1
2n
>0(n∈N*)

∴Tn<-1.------------------(12分)
Tn+1-Tn=(-1-
2n+1
2n+1
)-(-1-
2n-1
2n
)=
2n-3
2n+1

∴Tn<Tn+1(n≥2)-----------(13分)
而T1>T2,所以T2最小
T2=-
7
4
,所以Tn≥-
7
4

综上所述,-
7
4
Tn<-1(n∈N*)
.----------(14分)
点评:本题考查等差数列与等比数列的综合,考查数列的通项与求和,考查数列的单调性,正确求数列的通项与求和是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的公积.已知数列{an}是等积数列,且a1=2,公积为5,则这个数列的前n项和Sn的计算公式为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

按照等差数列的定义我们可以定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么a8的值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在一个数列中,如果?n∈N*,都有an•an+1•an+2=k(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列{an}是等积数列,且a1=1,a2=3,公积为27,则a1+a2+a3+…+a18=
78
78

查看答案和解析>>

科目:高中数学 来源: 题型:

一个数列,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和.已知数列{an}是等和数列,且a1=2,公和为5,那么这个数列的前21项和S21的值为
52
52

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一个常数,那么这个数列叫做等差数列,这个常数叫做该数列的公差.
(1)类比等差数列的定义给出“等和数列”的定义;
(2)已知数列{an}是等和数列,且a1=2,公和为5,求 a18的值,并猜出这个数列的通项公式(不要求证明).

查看答案和解析>>

同步练习册答案