精英家教网 > 高中数学 > 题目详情
7.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个单位向量,已知$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$,$\overrightarrow{BC}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{a}$-2$\overrightarrow{b}$.
(1)已知$\overrightarrow{a}$⊥$\overrightarrow{b}$,若$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,求k的值;
(2)若A,B,D三点共线,求k的值.

分析 (1)根据 $\overrightarrow{AB}•\overrightarrow{BC}$=0,以及$\overrightarrow{a}•\overrightarrow{b}$=0,|$\overrightarrow{a}$|=1=|$\overrightarrow{b}$|,求得k的值.
(2)由题意可得必存在λ,使$\overrightarrow{AB}$=λ•$\overrightarrow{BD}$,即2$\overrightarrow{a}$+k$\overrightarrow{b}$=λ(2$\overrightarrow{a}$-$\overrightarrow{b}$),由此求得k的值.

解答 解:(1)∵$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AB}•\overrightarrow{BC}$=(2$\overrightarrow{a}$+k$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=0,
再根据|$\overrightarrow{a}$|=1=|$\overrightarrow{b}$|,以及 $\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴2${\overrightarrow{a}}^{2}$+k${\overrightarrow{b}}^{2}$=0,
∴2+k=0,
∴k=-2.
(2)由已A,B,D三点共线,可得必存在λ,使$\overrightarrow{AB}$=λ•$\overrightarrow{BD}$.
又 $\overrightarrow{BD}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$=($\overrightarrow{a}$+$\overrightarrow{b}$)+($\overrightarrow{a}$-2$\overrightarrow{b}$)=2$\overrightarrow{a}$-$\overrightarrow{b}$,
∴$\overrightarrow{AB}$=2$\overrightarrow{a}$+k$\overrightarrow{b}$=λ(2$\overrightarrow{a}$-$\overrightarrow{b}$),
∴$\left\{\begin{array}{l}{2=2λ}\\{k=-λ}\end{array}\right.$,
求得k=-1,λ=1.

点评 本题主要考查两个向量的加减法及其几何意义,平面向量基本定理的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.平面xOy内,动点P到点F($\sqrt{2}$,0)的距离与它到直线x=2$\sqrt{2}$的距离之比为$\frac{{\sqrt{2}}}{2}$;
(1)求动点P的轨迹方程;
(2)设O为原点,若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数f(x)为奇函数.则函数y=x${\;}^{\frac{1}{5}}$f(x)的图象关于(  )
A.原点对称B.x轴对称C.y轴对称D.直线y=x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知杨辉三角,将第4行的第一个数乘以1,第2个数乘以2,第3个数乘以4,第4个数乘以8后,这一行所以所有数字之和等于27(用数字作答):若等比数列{an}的前项是a1,公比是q(q≠1),将杨辉三角的第n+1行的第1个数乘以a1,第2个数乘以a2,…,第n+1个数乘以an+1后,这一行所有数字之和等于a1(1+q)n(用a1,q.n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知PA是圆O的切线,切点为A,PA=2,AC是圆O的直径,PC交圆O于点圆B,∠PAB=30°,则圆O的半径为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意的x∈[a,b],都有|f(x)-g(x)|≤1,则称f(x)与g(x)在[a,b]上是“密切函数”,区间[a,b]称为“密切区间”.若f(x)=lnx与g(x)=$\frac{mx-1}{x}$在[$\frac{1}{e}$,e]上是“密切函数”,则实数m的取值范围是[e-2.2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.用单位长的不锈钢条焊接如图系列的四面体铁架,图中的小圆圈.表示焊接点,图1两层共4个焊接点,图2三层共10个焊接点,图3四层共20个焊接点,以此类推,图n共有$\frac{n(n+1)(n+2)}{6}$个焊接点(用含n的式子表示).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{1+lnx}{x}$,若对任意的x1,x2∈[e2,+∞),有|$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$|>$\frac{k}{{x}_{1}•{x}_{2}}$,则实数k的取值范围为(  )
A.(-∞,2]B.(-∞,1)C.[2,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.点P(0,1)到直线l:3x-4y+1=0的距离为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

同步练习册答案