【题目】如图,已知F1、F2是椭圆G: 的左、右焦点,直线l:y=k(x+1)经过左焦点F1 , 且与椭圆G交于A、B两点,△ABF2的周长为 .
(Ⅰ)求椭圆G的标准方程;
(Ⅱ)是否存在直线l,使得△ABF2为等腰直角三角形?若存在,求出直线l的方程;若不存在,请说明理由.
【答案】解:(Ⅰ)设椭圆G的半焦距为c,因为直线l与x轴的交点为(﹣1,0),故c=1. 又△ABF2的周长为 ,即 ,故a= .
所以,b2=a2﹣c2=3﹣1=2.
因此,椭圆G的标准方程为 ;
注:本小题也可以用焦点和离心率作为条件,即将周长换离心率.
(Ⅱ)不存在.理由如下:先用反证法证明AB不可能为底边,即|AF2|≠|BF2|.
由题意知F2(1,0),设A(x1 , y1),B(x2 , y2),假设|AF2|=|BF2|,
则 ,
又 , ,代入上式,消去 ,得:(x1﹣x2)(x1+x2﹣6)=0.
因为直线l斜率存在,所以直线l不垂直于x轴,所以x1≠x2 , 故x1+x2=6(与x1≤ ,x2≤ ,x1+x2≤2 <6,矛盾).
联立方程 ,得:(3k2+2)x2+6k2x+3k2﹣6=0,
所以 =6,矛盾.
故|AF2|≠|BF2|.
再证明AB不可能为等腰直角三角形的直角腰.
假设△ABF2为等腰直角三角形,不妨设A为直角顶点.
设|AF1|=m,则 ,
在△AF1F2中,由勾股定理得: ,此方程无解.
故不存在这样的等腰直角三角形.
注:本题也可改为是否存在直角三角形?会简单一些.改为是否存在等腰三角形则不易计算,也可修改椭圆方程使存在等腰直角三角形.
【解析】(Ⅰ)由题意可知:c=1,4a=4 ,b2=a2﹣c2=3﹣1=2.即可求得椭圆方程;(Ⅱ)分类讨论,假设|AF2|=|BF2|,利用作差法,即可求得x1+x2=6.(与x1≤ ,x2≤ ,x1+x2≤2 <6,矛盾),将直线方程代入椭圆方程由韦达定理: =6,矛盾.故|AF2|≠|BF2|.再证明AB不可能为等腰直角三角形的直角腰.由勾股定理得: ,此方程无解.故不存在这样的等腰直角三角形.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|cosx|sinx,给出下列四个说法: ① ;
②函数f(x)的周期为π;
③f(x)在区间 上单调递增;
④f(x)的图象关于点 中心对称
其中正确说法的序号是( )
A.②③
B.①③
C.①④
D.①③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥P﹣ABCD中,底面ABCD是边长为2的菱形,∠DAB= ,AC∩BD=O,且PO⊥平面ABCD,PO= ,点F,G分别是线段PB,PD上的中点,E在PA上,且PA=3PE.
(Ⅰ)求证:BD∥平面EFG;
(Ⅱ)求直线AB与平面EFG的成角的正弦值;
(Ⅲ)请画出平面EFG与四棱锥的表面的交线,并写出作图的步骤.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx﹣φ), 的图象经过点 ,且相邻两条对称轴的距离为 . (Ⅰ)求函数f(x)的解析式及其在[0,π]上的单调递增区间;
(Ⅱ)在△ABC中,a,b,c分别是A,B,C的对边,若 ,求∠A的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M 在椭圆E上.
(1)求椭圆E的方程;
(2)设P(﹣4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB均与圆x2+y2=r2(r>0)相切,求k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】医生的专业能力参数K可有效衡量医生的综合能力,K越大,综合能力越强,并规定:能力参数K不少于30称为合格,不少于50称为优秀.某市卫生管理部门随机抽取300名医生进行专业能力参数考核,得到如图所示的能力K的频率分布直方图:
(1)求出这个样本的合格率、优秀率;
(2)现用分层抽样的方法从中抽出一个样本容量为20的样本,再从这20名医生中随机选出2名. ①求这2名医生的能力参数K为同一组的概率;
②设这2名医生中能力参数K为优秀的人数为X,求随机变量X的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】AQI是表示空气质量的指数,AQI指数值越小,表明空气质量越好,当AQI指数值不大于100时称空气质量为“优良”.如图是某地4月1日到12日AQI指数值的统计数据,图中点A表示4月1日的AQI指数值为201,则下列叙述不正确的是( )
A.这12天中有6天空气质量为“优良”
B.这12天中空气质量最好的是4月9日
C.这12天的AQI指数值的中位数是90
D.从4日到9日,空气质量越来越好
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com