精英家教网 > 高中数学 > 题目详情
精英家教网如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.则△APB的重心G的轨迹方程为
 
分析:欲求轨迹方程,可寻找被动点M的坐标(x,y)与主动点N的坐标(x0,y0)之间的关系,并用x,y表示x0,y0,再代入曲线C0的方程即可;此法为“参数法”的一种,借助M、N两点坐标之间的关系及曲线C0的方程消去两个参数x0,y0
解答:解:设切点A、B坐标分别为(x0,x02)和(x1,x12)(x1≠x0),
∵y′=2x,∴两切线斜率分别为:2x0和2x1
于是:切线AP的方程为:2x0x-y-x02=0
切线BP的方程为:2x1x-y-x12=0
解得P点的坐标为:xP=
x0+x1
2
,yP=x0x1
所以△APB的重心G的坐标为xG=
x0+x1+xP
3
=xP
yG=
y0+y1+yP
3
=
x
2
0
+
x
2
1
x0x1 
3
=
(x0+x12-x0x1
3
=
4
x
2
P
-yP
3

∴yP=-3yG+4xG2,结合xP=xG代入点P所在直线方程,得到重心G的轨迹方程为:x-(-3y+4x2)-2=0,即y=
1
3
(4x2-x+2).
点评:本题求轨迹的方法称为“代入法”,问题的基本结构是:动点N在已知曲线C0上移动,动点M随之移动(伴随点),求动点M的轨迹方程.其求解可多参考本题分析中的一般解法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.

查看答案和解析>>

科目:高中数学 来源:江西 题型:解答题

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.
(1)求△APB的重心G的轨迹方程.
(2)证明∠PFA=∠PFB.

查看答案和解析>>

科目:高中数学 来源:模拟题 题型:解答题

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点,
(1)求△APB的重心G的轨迹方程;
(2)证明∠PFA=∠PFB。

查看答案和解析>>

科目:高中数学 来源:2011年高三数学精品复习17:抛物线及其性质(解析版) 题型:解答题

如图,设抛物线C:y=x2的焦点为F,动点P在直线l:x-y-2=0上运动,过P作抛物线C的两条切线PA、PB,且与抛物线C分别相切于A、B两点.则△APB的重心G的轨迹方程为    

查看答案和解析>>

同步练习册答案