精英家教网 > 高中数学 > 题目详情
甲乙两地相距s千米,一船由甲地逆水行驶至乙地,水速为常量p(单位:千米/小时)船在静水中的最大速度为q千米/小时(q>p),已知轮船每小时的燃料费用(单位:元)与船在静水中的速度v (单位:千米/小时)的平方成正比,比例系数为k.
(1)把全程燃料费用y(单位:元)表示为船在静水中的速度v的函数,并求出这个函数的定义域;
(2)为了使全程燃料费用最小,船的实际前进速度为多少?
考点:函数模型的选择与应用
专题:应用题,函数的性质及应用
分析:(1)由题意,全程燃料费由每小时的费用及航程时间来决定,所以应先找出每小时的燃料费用及全程航行时间;
(2)问是求最值问题.是否需用基本不等式,要注意适用的条件,尤其是第(1)问的定义域,水速应小于船的最小速度,所以定义域应是(p,q].因此,本题若基本不等式的“=”号能满足即可求得结果,但也存在不能使“=”号成立的情况,因而,也需用函数的单调性求解.
解答: 解:(1)由于船每小时航行的燃料费用是kv2,全程航行时间为
s
v-p
,于是全程燃料费用y=kv2
s
v-p

故所求函数是y=ks•
v2
v-p
(p<v≤q),定义域是(p,q].
(2)y=ks•
(v2-p2)+p2
v-p
=ks[(v+p)+
p2
v-p
]
=ks[v-p+
p2
v-p
+2p]≥4ksp.
其中取“=”的充要条件是v-p=
p2
v-p
,即v=2p.
①当v=2p∈(p,q],即2p≤q时,ymin=f(2p)=4ksp.
②当2p?(p,q],即2p>q.任取v1,v2∈(p,q]且v1<v2,则
y1-y2=ks[(v1-v2)+(
p2
v1-p
-
p2
v2-p
)]
=
ks(v2-v1)
(v1-p)(v2-p)
[p2-(v1-p)(v2-p)].
而p2-(v1-p)(v2-p)>p2-(q-p)(q-p)=q(2p-q)>0.
∴y1-y2>0.
故函数y在区间(p,q]内递减,此时y(v)≥y(q).
即ymin=y(q)=ks
q2
q-p
.此时,船的前进速度等于q-p.
故为使全程燃料费用最小,当2p≤q时,船的实际前进速度应为2p-p=p(千米/小时);当2p>q时,船的实际前进速度为q-p(千米/小时).
点评:本题考查函数解析式的列法及函数最值的求法,考查学生分析问题、解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)从1到9的九个数字中取三个偶数四个奇数,试问:能组成多少个没有重复数字的七位数?其中偶数排在一起,奇数也排在一起的有几个?
(2)在二项式(
x
+
1
2
4x
n的展开式中,只有第五项的二项式系数最大,把展开式中所有的项重新排成一列,求有理项不相邻的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

过点M(3,1),作圆(x-2)2+(y-3)2=1的两条切线,切点为A、B
(1)求两切线MA、MB的方程;
(2)求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

某厂2014年初用36万元购进一生产设备,并立即投入生产,该生产设备第一年维修保养费用4万元,从第二年开始,每年所需维修保养费用比上一年增加2万元,该生产设备使用后,每年的年收入为23万元,该生产设备使用戈年后的总盈利额为y万元.问:
(I)从第几年开始,该厂开始盈利(总盈利额为正值);
(Ⅱ)到哪一年,年平均盈利额能达到最大值?此时工厂共获利多少万元?
(前x年的总盈利额=前x年的总收入一前x年的总维修保养费用一购买设备的费用)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x),g(x)的导函数分别为f′(x),g′(x)且f′(x)<g′(x).则下列结论一定成立的是(  )
A、f(1)+g(0)<g(1)+f(0)
B、f(1)+g(0)>g(1)+f(0)
C、f(1)-g(0)>g(1)-f(0)
D、f(1)-g(0)<g(1)-f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

某电子仪器厂打算生产某种仪器,经市场调查,当该仪器价格P为200元时,需求量Q为3000台.若该仪器价格P每提高20元,需求量Q就减少500台;当仪器价格P钉在215元时,仪器厂的供应量S为3425台,仪器价格P每提高40元,仪器厂就多生产并增加供应280台.试求:
(1)当价格P为多少时,销售收入R最多?(销售收入=价格×销售量)
(2)当需求量Q为多少时,达到供求平衡?(供求平衡指供应量=需求量)此时销售收入是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中,既是单调函数,又是奇函数的是(  )
A、y=x5
B、y=5x
C、y=log2x
D、y=x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对一切x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0.
(1)判断f(x)的奇偶性,并说明理由;
(2)证明f(x)在R上是减函数;
(3)若关于t的方程f(t2-3t)+f(t2-k=0)在[0,2]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sinx.
(Ⅰ)若f(α)=
1
3
,且α为第二象限角,计算:cos2α
1-sinα
1+sinα
+sin2α
1-cosα
1+cosα

(Ⅱ)若函数g(x)的图象与函数f(x)的图象关于直线x=
π
3
对称,求函数g(x)的解析式.

查看答案和解析>>

同步练习册答案