精英家教网 > 高中数学 > 题目详情

【题目】在直三棱柱A1B1C1﹣ABC中, ,AB=AC=AA1=1,已知G和E分别为A1B1和CC1的中点,D与F分别为线段AC和AB上的动点(不包括端点),若GD⊥EF,则线段DF的长度的取值范围为(
A.[ ,1)
B.[ ,1]
C.( ,1)
D.[ ,1)

【答案】A
【解析】解:建立如图所示的空间直角坐标系,
则A(0,0,0),E(0,1, ),
G( ,0,1),F(x,0,0),D(0,y,0)
由于GD⊥EF,所以x+2y﹣1=0
DF= =
当y= 时,线段DF长度的最小值是
当y=1时,线段DF长度的最大值是 1
而不包括端点,故y=1不能取;
故选:A.
根据直三棱柱中三条棱两两垂直,本题考虑利用空间坐标系解决.建立如图所示的空间直角坐标系,设出F、D的坐标,利用GD⊥EF求得关系式,写出DF的表达式,然后利用二次函数求最值即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知集合P={x|x2>2},Q={0,1,2,3},则(RP)∩Q=(
A.{0,1}
B.{0}
C.{2,3}
D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱柱ABCD﹣A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.
(Ⅰ)证明B1C1⊥CE;
(Ⅱ)求二面角B1﹣CE﹣C1的正弦值.
(Ⅲ)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为 ,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系 中,椭圆 的中心为坐标原点,左焦点为F1(﹣1,0),离心率

(1)求椭圆G 的标准方程;

(2)已知直线 与椭圆 交于 两点,直线 与椭圆 交于 两点,且 ,如图所示.

①证明:

②求四边形 的面积 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x﹣2y﹣2=0上;
(2)半径为 ,且与直线2x+3y﹣10=0切于点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)若h(x)=g(x)﹣λf(x)+1在[﹣1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)若函数的图象在处的切线垂直于直线,求实数的值及直线的方程;

(2)求函数的单调区间;

(3)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的倾斜角为且经过点以原点为极点,以轴正半轴为极轴,与直角坐标系取相同的长度单位,建立极坐标系,设曲线的极坐标方程为.

1)若直线与曲线有公共点,求的取值范围;

(2)设为曲线上任意一点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩 (同一组中的数据用该组区间的中点值作代表);

(3)设根据茎叶图计算出的全班的平均成绩为,并假设,且各自取得每一个可能值的机会相等,在(2)的条件下,求概率.

查看答案和解析>>

同步练习册答案