精英家教网 > 高中数学 > 题目详情
16.已知点(2,5)和(8,3)是函数y=-k|x-a|+b与y=k|x-c|+d的图象仅有的两个交点,那么a+b+c+d的值为18.

分析 将两个交点代入函数y=-k|x-a|+b方程,得到方程组,将两个方程相减;据绝对值的意义及k的范围得到k,a满足的等式;同样的过程得到k,c满足的等式,两式联立求出a+c的值,再求出b+d,即可得到结论.

解答 解:∵函数y=-k|x-a|+b与y=k|x-c|+d的图象交于两点(2,5),(8,3),
∴5=-k|2-a|+b ①
3=-k|8-a|+b ②
5=k|2-c|+d ③
3=k|8-c|+d ④
①-②得2=-k|2-a|+k|8-a|⑤
③-④得2=k|2-c|-k|8-c|⑥
⑤=⑥得|8-a|+|8-c|=|2-c|+|2-a|
即|8-a|-|2-a|+|8-c|-|2-c|=0
设f(x)=|8-x|-|2-x|,则f(a)+f(c)=0,
画出函数f(x)的图象,如图,其关于点A(5,0)成中心对称,
故点a与点c关于点A(5,0)成中心对称,
∴$\frac{1}{2}$(a+c)=5,
∴a+c=10,
又∵函数y=-k|x-a|+b的对称轴为x=a,函数y=k|x-c|+d的对称轴为x=c,
∴2<a<8,2<c<8
②+③:8=-k(8-a)+b+k(c-2)+d,
∴b+d=8,
∴a+b+c+d=18
故答案为:18.

点评 本题考查函数的图象,考查绝对值的意义,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.求函数y=$\frac{tanx}{1+ta{n}^{2}x}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知集合M={y|y=3x},M={y|y=x${\;}^{\frac{2}{3}}$},则M∩N=(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\sqrt{(acosx-1)^{2}+si{n}^{2}x}$
(1)当a=2时,求f(x)的值域;
(2)当且仅当x=2kπ,k∈Z时,f(x)取最小值,求正数a的取值范围;
(3)是否存在正数a,使得对于定义域内的任意x,$\frac{f(x)}{a-cosx}$为定值?若存在,求a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知Sn是等比数列{an}的前n项和,a1=30,8S6=9S3,设Tn=a1a2a3…an,则使Tn取得最大值的n为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在直角坐标系xOy中,直线l的直角坐标方程为x-y+4=0,曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{3}cosα\\ y=sinα\end{array}\right.(α$为参数)
(Ⅰ)已知在极坐标系(与直角坐标系xOy取相同长度单位,且以原点为极点,以x轴正半轴为极轴)中,点P的极坐标为($\sqrt{2}$,$\frac{π}{4}$),求点P关于直线l的对称点P0的直角坐标;
(Ⅱ)设点Q是曲线C上的一个动点,求它到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知曲线C的极坐标方程是ρ=4cosθ,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,设直线L的参数方程为$\left\{\begin{array}{l}x=5+\frac{{\sqrt{3}}}{2}t\\ y=\frac{1}{2}t\end{array}\right.$(t为参数)
(1)求曲线C的直角坐标方程与直线L的普通方程
(2)设曲线C与直线L相交于P,Q两点,求|PQ|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图所示,已知OPQ是半径为1,圆心角为$\frac{π}{3}$的扇形,A是扇形弧PQ上的动点,AB∥OQ,OP与AB交于点B,AC∥OP,OQ与AC交于点C,求点A的位置,使平行四边形ABOC的面积最大,并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={y|y=log2x,0<x<1},B={y|y=($\frac{1}{2}$)x,x>1},则(∁RA)∩B=(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.

查看答案和解析>>

同步练习册答案